Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 5.43 trang 186 SBT Toán Đại số lớp 11 Nâng...

Câu 5.43 trang 186 SBT Toán Đại số lớp 11 Nâng cao: Cho hàm số, chứng minh rằng...

Chia sẻ
Cho hàm số, chứng minh rằng. Câu 5.43 trang 186 sách bài tập Đại số và Giải tích 11 Nâng cao – Ôn tập chương V – Đạo hàm

Cho hàm số

                \(f\left( x \right) = {1 \over {\left| {\cos x} \right|}}\left( {x \ne {\pi  \over 2} + k\pi ;k \in Z} \right)\) 

Chứng minh rằng

                        \(f’\left( x \right) = {{\tan x} \over {\left| {\cos x} \right|}}\)

Giải

Vì \(x \ne {\pi  \over 2} + k\pi ,k \in Z\) nên \(\cos x \ne 0.\) Xét hai trường hợp

+ Nếu \(\cos x > 0\) thì

                            \(f\left( x \right) = {1 \over {\left| {\cos x} \right|}} = {1 \over {\cos x}}\)

Suy ra

            \(f’\left( x \right) =  – {{\left( { – \sin x} \right)} \over {{{\cos }^2}x}} = {{\sin x} \over {{{\cos }^2}x}} = {1 \over {\cos x}}.\tan x = {{\tan x} \over {\left| {\cos x} \right|}}\,\,\,\left( 1 \right)\)

Nếu \(\cos x < 0\) thì

                        \(f\left( x \right) = {1 \over {\left| {\cos x} \right|}} = -{1 \over {\cos x}}\)

Suy ra

\(f’\left( x \right) =  – {{ – \sin x} \over {{{\cos }^2}x}} = {1 \over {\cos x}}.\tan x = {{\tan x} \over {\left| {\cos x} \right|}}\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(f’\left( x \right) = {{\tan x} \over {\left| {\cos x} \right|}}\,\left( {x \ne {\pi  \over 2} + k\pi ,k \in Z} \right).\)


Loading...