63. Trang 15 Sách bài tập Hình Học 11 Nâng cao
Chứng minh rằng nếu hai tam giác có các đường cao tương ứng bằng nhau thì bằng nhau.
Giả sử tam giác ABC có đường cao AH, BI, CK và tam giác A’B’C’ có các đường cao A’H’, B’I’, C’K’ thỏa mãn AH = A’H’, BI = B’I’, CK = C’K’.
Advertisements (Quảng cáo)
Trong tam giác ABC ta có AB.CK = BC.AH = CA.BI.
Cũng vậy, trong tam giác A’B’C’ ta có A’B’.C’K’= B’C’.A’H’ = C’A’.B’I’
Từ đó, suy ra \({{AB} \over {A’B’}} = {{BC} \over {B’C’}} = {{CA} \over {C’A’}} = k\)
Như vậy, hai tam giác ABC và A’B’C’ đồng dạng. Do đó, có phép đồng dạng F tỉ số k biến tam giác ABC thành tam giác A’B’C’. Nhưng F biến đường cao AH thành đường cao A’H’ với A’H’ = AH nên k = 1. Do đó F là phép dời hình. Vậy tam giác ABC thành tam giác A’B’C’.