Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.6 trang 112 Sách bài tập Đại số và giải tích...

Bài 2.6 trang 112 Sách bài tập Đại số và giải tích 11: Các dãy số (un), (vn) được xác định bằng công thức...

Các dãy số (un), (vn) được xác định bằng công thức . Bài 2.6 trang 112 Sách bài tập (SBT) Đại số và giải tích 11 - Bài 2. Dãy số

Các dãy số (un), (vn)được xác định bằng công thức 

a) \(\left\{ \matrix{
{u_1} = 1 \hfill \cr 
{u_{n + 1}} = {u_n} + {n^3}{\rm{ voi }}n \ge 1; \hfill \cr} \right.\)    

b) \(\left\{ \matrix{
{v_1} = 2 \hfill \cr 
{v_{n + 1}} = v_n^2{\rm{ }}voi{\rm{ }}n \ge 1 \hfill \cr} \right.\)    

Tìm công thức tính (un), (vn) theo n. Tính số hạng thứ 100 của dãy số (un). Hỏi số 4294967296 là số hạng thứ mấy của dãy số (vn)

Giải:

a)      Từ \({u_{n + 1}} - {u_n} = {n^3}\) ta có

\(\eqalign{
& {u_1} = 1; \cr
& {u_2} - {u_1} = {1^3}; \cr
& {u_3} - {u_2} = {2^3}; \cr
& ... \cr
& {u_{n - 1}} - {u_{n - 2}} = {\left( {n - 2} \right)^3}; \cr
& {u_n} - {u_{n - 1}} = {\left( {n - 1} \right)^3}. \cr} \) 

Cộng từng vế n đẳng thức trên và rút gọn, ta được

\({u_n} = 1 + {1^3} + {2^3} + ... + {\left( {n - 1} \right)^3}\)                    

Advertisements (Quảng cáo)

Sử dụng kết quả bài tập 12 b) - ta có

\({1^3} + {2^3} + ... + {\left( {n - 1} \right)^3} = {{{{\left( {n - 1} \right)}^2}{n^2}} \over 4}\)           

Vậy

\(\eqalign{
& {u_n} = 1 + {{{n^2}{{\left( {n - 1} \right)}^2}} \over 4}. \cr
& {u_{100}} = 24502501. \cr} \)

b)      Hãy viết một vài số hạng đầu của dãy và quan sát

\(\eqalign{
& {v_1} = 2; \cr
& {v_2} = v_1^2 = {2^2}; \cr
& {v_3} = v_2^2 = {2^4} = {2^{{2^2}}}; \cr
& {v_4} = v_3^2 = {2^8} = {2^{{2^3}}} \cr} \)

Từ đây dự đoán \({v_n} = {2^{{2^{n - 1}}}}\)

Công thức trên dễ dàng chứng minh bằng phương pháp quy nạp. Số 4294967296 là số hạng thứ sáu của dãy số (vn)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)