Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.8 trang 112 SBT Đại số và giải tích 11: Cho...

Bài 2.8 trang 112 SBT Đại số và giải tích 11: Cho dãy số (un) thoả mãn điều kiện: Với mọi n ∈ N* thì...

Cho dãy số (un) thoả mãn điều kiện: Với mọi n ∈ N* thì . Bài 2.8 trang 112 Sách bài tập (SBT) Đại số và giải tích 11 - Bài 2. Dãy số

Cho dãy số (un) thoả mãn điều kiện: Với mọi N* thì \(0 < {u_n} < 1\) và \({u_{n + 1}} < 1 - {1 \over {4{u_n}}}\)

Chứng minh dãy số đã cho là dãy giảm.

Vì \(0 < {u_n} < 1\) với mọi n nên \(1 - {u_{n + 1}} > 0\). 

Áp dụng bất đẳng thức Cô – si ta có \({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) \le {1 \over 4}\)

Advertisements (Quảng cáo)

Mặt khác, từ giả thiết \({u_{n + 1}} < 1 - {1 \over {4{u_n}}}\)

suy ra \({u_{n + 1}}.{u_n} < {u_n} - {1 \over 4}\) hay \({1 \over 4} < {u_n}\left( {1 - {u_{n + 1}}} \right)\)

So sánh (1) và (2) ta có:

\({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) < {u_n}\left( {1 - {u_{n + 1}}} \right)\) hay \({u_{n + 1}} < {u_n}\) 

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)