Chứng minh các đẳng thức sau với n ∈ N*
a) \({A_n} = {1 \over {1.2.3}} + {1 \over {2.3.4}} + ... + {1 \over {n\left( {n + 1} \right)\left( {n + 2} \right)}} = {{n\left( {n + 3} \right)} \over {4\left( {n + 1} \right)\left( {n + 2} \right)}}\) ;
b) \({B_n} = 1 + 3 + 6 + 10 + ... + {{n\left( {n + 1} \right)} \over 2} = {{n\left( {n + 1} \right)\left( {n + 2} \right)} \over 6}\) ;
c) \({S_n} = \sin x + \sin 2x + \sin 3x + ... + \sin nx = {{\sin {{nx} \over 2}.\sin {{\left( {n + 1} \right)x} \over 2}} \over {\sin {x \over 2}}}\)
Giải:
a) HD: Kiểm tra với n = 1 sau đó biểu diễn
\({A_{k + 1}} = {A_k} + {1 \over {\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}\)
b) HD: Kiểm tra với n = 1
Advertisements (Quảng cáo)
Giả sử đã cho \({B_k} = {{k\left( {k + 1} \right)\left( {k + 2} \right)} \over 2}\)
Ta cần chứng minh
\({B_{k + 1}} = {{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)} \over 2}\) bằng cách tính \({B_{k + 1}} = {B_k} + {{\left( {k + 1} \right)\left( {k + 2} \right)} \over 2}\)
c) HD: Kiểm tra với n = 1
Giả sử đã có \({S_k} = {{\sin {{kx} \over 2}.\sin {{\left( {k + 1} \right)} \over 2}x} \over {\sin {x \over 2}}}\)
Viết \({S_{k + 1}} = {S_k} + \sin \left( {k + 1} \right)x\) sử dụng giả thiết quy nạp và biến đổi ta có
\({S_{k + 1}} = {{\sin {{\left( {k + 1} \right)x} \over 2}.\sin {{\left( {k + 2} \right)} \over 2}x} \over {\sin {x \over 2}}}\left( {đpcm} \right)\)