Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 1.9 trang 21 Toán 11 tập 1 – Kết nối tri...

Bài 1.9 trang 21 Toán 11 tập 1 - Kết nối tri thức: Tính \(\sin 2a, \cos 2a, \tan 2a, \;\)biết...

- Từ hệ thức lượng giác cơ bản là mối liên hệ giữa hai giá trị lượng giác, Giải và trình bày phương pháp giải bài 1.9 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức Bài 2. Công thức lượng giác. Tính (sin 2a, cos 2a, tan 2a, ;)biết...

Question - Câu hỏi/Đề bài

Tính \(\sin 2a,\cos 2a,\tan 2a,\;\)biết:

a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);

b) \(\sin a + \cos a = \frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Từ hệ thức lượng giác cơ bản là mối liên hệ giữa hai giá trị lượng giác, khi biết một giá trị lượng giác ta sẽ suy ra được giá trị còn lại. Cần lưu ý tời dấu của giá trị lượng giác để chọn cho phù hợp

- Sử dụng các hằng đẳng thức đáng nhớ.

Answer - Lời giải/Đáp án

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)

Ta có: \({\sin ^2}a + {\cos ^2}a = 1\)

\(\Leftrightarrow \frac{1}{9} + {\cos ^2}a = 1\)

\(\Leftrightarrow {\cos ^2}a = 1 - \frac{1}{9}= \frac{8}{9}\)

\(\Leftrightarrow \cos a =\pm\sqrt { \frac{8}{9}} = \pm \frac{{2\sqrt 2 }}{3}\)

Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)

Advertisements (Quảng cáo)

Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{{\sqrt 2 }}{4}\)

Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) = - \frac{{4\sqrt 2 }}{9}\)

\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)

\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} = - \frac{{4\sqrt 2 }}{7}\)

b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)

\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)

Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 = - \frac{3}{4}\)

Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)

\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)

\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)

\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 = - \frac{{\sqrt 7 }}{4}\)

\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)

Advertisements (Quảng cáo)