Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 5.4 trang 109 Toán 11 tập 1 – Kết nối tri...

Bài 5.4 trang 109 Toán 11 tập 1 - Kết nối tri thức: Viết các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số 1, (12) = 1...

Dựa vào công thức tính tổng cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\). Hướng dẫn cách giải/trả lời bài 5.4 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức Bài 15. Giới hạn của dãy số. Viết các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân sốa) 1, (12) = 1, 121212…; b) 3, (102) = 3...

Question - Câu hỏi/Đề bài

Viết các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số

a) 1, (12) = 1, 121212…; b) 3, (102) = 3, 102102102…

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào công thức tính tổng cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\).

Answer - Lời giải/Đáp án

a) \(1,12121212 \ldots . = 1 + 0.12 + 0.0012 + 0.000012 + \ldots \)

\(1 + 12 \times {10^{ - 2}} + 12 \times {10^{ - 4}} + 12 \times {10^{ - 6}} + \ldots \)

Advertisements (Quảng cáo)

\(12 \times {10^{ - 2}} + 12 \times {10^{ - 4}} + 12 \times {10^{ - 6}} + \ldots \)là tổng cấp số nhân lùi vô hạn có

\({u_1} = 12 \times {10^{ - 2}},\;q = {10^{ - 2}}\)

Nên \(1,121212 \ldots = 1 + \frac{{{u_1}}}{{1 - q}} = 1 + \frac{{12 \times {{10}^{ - 2}}}}{{1 - {{10}^{ - 2}}}} = \frac{{37}}{{33}}\)

b) \(3,102102102 \ldots = 3 + 0.102 + 0.000102 + \ldots \)

\( = 3 + 102 \times {10^{ - 3}} + 102 \times {10^{ - 6}} + \ldots \)

\(102 \times {10^{ - 3}} + 102 \times {10^{ - 6}} + 102 \times {10^{ - 9}} + \ldots \) là tổng cấp số nhân lùi vô hạn có

\({u_1} = 102 \times {10^{ - 3}},\;q = {10^{ - 3}}\)

Nên \(3,102102102 \ldots = 1 + \frac{{{u_1}}}{{1 - q}} = 1 + \frac{{\left( {102 \times {{10}^{ - 3}}} \right)}}{{1 - {{10}^{ - 3}}}} = \frac{{1033}}{{333}}\)

Advertisements (Quảng cáo)