Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA \( \bot \) (ABCD) và \(SA = a\sqrt 2 .\)
a) Tính góc giữa SC và mặt phẳng (ABCD).
b) Tính góc giữa BD và mặt phẳng (SAC).
c) Tìm hình chiếu của SB trên mặt phẳng (SAC).
- Góc giữa đường thẳng a với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên (P).
- Xác định hình chiếu tại 1 điểm
a) A là hình chiếu của S trên (ABCD) \(\left( {SA \bot \left( {ABCD} \right)} \right)\)
C là hình chiếu của C trên (ABCD)
Advertisements (Quảng cáo)
\( \Rightarrow \) AC là hình chiếu của SC trên (ABCD)
\( \Rightarrow \) \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)
Xét tam giác ABC vuông tại B có
\(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)
Xét tam giác SAC vuông tại A có
\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}\)
Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {45^0}\)
b) \(\left. \begin{array}{l}AC \bot BD\left( {hv\,\,ABCD} \right)\\SA \bot BD\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow \left( {BD,\left( {SAC} \right)} \right) = {90^0}\)
c) Gọi \(AC \cap BD = \left\{ O \right\}\) mà \(BD \bot \left( {SAC} \right)\)
\( \Rightarrow \) O là hình chiếu của B trên (SAC)
S là hình chiếu của S trên (SAC)
\( \Rightarrow \) SO là hình chiếu của SB trên (SAC).