Hoạt động 3
Cho hai hàm số \(f\left( x \right) = {x^2}\) và \(g\left( x \right) = - x + 1\)
a) Xét tính liên tục của hai hàm số trên tại \(x = 1\)
b) Tính \(L = \mathop {{\rm{lim}}}\limits_{x \to 1} \;\left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh L với \(f\left( 1 \right) + g\left( 1 \right)\).
Giả sử hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) liên tục tại điểm \({x_0}\). Khi đó:
a) Các hàm số \(y = f\left( x \right) + g\left( x \right),\;y = f\left( x \right) - g\left( x \right),\;y = f\left( x \right).g\left( x \right)\) liên tục tại \({x_0}\)
b) Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại \({x_0}\) nếu \(g\left( {{x_0}} \right) \ne 0\)
a)
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} {x^2} = 1\)
\(f\left( 1 \right) = {1^2} = 1\)
Vậy \(f\left( x \right)\) liên tục tại \(x = 1\)
\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( { - x + 1} \right) = 0\)
Advertisements (Quảng cáo)
\(g\left( 1 \right) = - 1 + 1 = 0\)
Vậy \(g\left( x \right)\) liên tục tại \(x = 1\)
b) \(f\left( 1 \right) + g\left( 1 \right) = 1 + 0 = 1\)
\(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - x + 1} \right) = 1\)
\(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = f\left( 1 \right) + g\left( 1 \right)\)
Vận dụng
Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Nếu hàm số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\)liên tục trên đoạn \(\left[ {a;{\rm{ }}b} \right]\) và \(f\left( a \right){\rm{ }}f\left( b \right){\rm{ }} < {\rm{ }}0\) thì tồn tại ít nhất một điểm \(c \in \left( {a;{\rm{ }}b} \right)\)sao cho \(f\left( c \right){\rm{ }} = {\rm{ }}0.\)
Vận tốc trung bình trên quãng đường đi là: 180: 3 = 60 (km/h)
Vì vận tốc liên tục trong suốt thời gian chạy, có thời điểm vận tốc dưới trung bình và có thời điểm trên mức trung bình nên có ít nhất một thời điểm xe chạy với vận tốc bằng vận tốc trung bình là 60km/h.