Hoạt động 3
Tính đạo hàm f′(x0) tại điểm x0 bất kì trong các trường hợp sau:
a) f(x)=c (c là hằng số);
b) f(x)=x.
f′(x0)=lim nếu tồn tại giới hạn hữu hạn \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}
a) f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{c - c}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 0 = 0
b) f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1
Luyện tập 2
Tính đạo hàm của các hàm số sau:
Advertisements (Quảng cáo)
a) y = {x^2} + 1;
b) y = kx + c (với k, c là các hằng số).
Hàm số y = f\left( x \right) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm f’\left( x \right) tại mọi điểm x thuộc khoảng đó, kí hiệu là y’ = f’\left( x \right)
a) Với {x_0} bất kì, ta có:
\begin{array}{c}f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} + 1 - \left( {x_0^2 + 1} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + {x_0}} \right) = 2{x_0}\end{array}
Vậy hàm số y = {x^2} + 1 có đạo hàm là hàm số y’ = 2x
b) Với {x_0} bất kì, ta có:
\begin{array}{c}f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{kx + c - \left( {k{x_0} + c} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{kx - k{x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{k\left( {x - {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} k = k\end{array}
Vậy hàm số y = kx + c (với k, c là các hằng số) có đạo hàm là hàm số y’ = k