Hướng dẫn giải lý thuyết Công thức lượng giác - SGK Toán 11 Kết nối tri thức Bài 2. Công thức lượng giác. Công thức cộng \(\begin{array}{l}\sin \left( {a + b} \right) = \sin a\cos b + \cos asinb\\sin\left( {a - b} \right)
1. Công thức cộng
sin(a+b)=sinacosb+cosasinbsin(a−b)=sinacosb−cosasinbcos(a+b)=cosacosb−sinasinbcos(a−b)=cosacosb+sinasinbtan(a+b)=tana+tanb1−tanatanbtan(a−b)=tana−tanb1+tanatanb
2. Công thức nhân đôi
sin2a=2sinacosacos2a=cos2a−sin2a=2cos2a−1=1−2sin2atan2a=2tana1−tan2a
Suy ra, công thức hạ bậc:
sin2a=1−cos2a2,cos2a=1+cos2a2
Advertisements (Quảng cáo)
3. Công thức biến đổi tích thành tổng
cosacosb=12[cos(a+b)+cos(a−b)]sinasinb=12[cos(a−b)−cos(a+b)]sinacosb=12[sin(a+b)+sin(a−b)]
4. Công thức biến đổi tổng thành tích
cosa+cosb=2cosa+b2cosa−b2cosa−cosb=−2sina+b2sina−b2sina+sinb=2sina+b2cosa−b2sina−sinb=2cosa+b2sina−b2