Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Lý thuyết Hàm số lượng giác – Toán 11 Kết nối tri...

Lý thuyết Hàm số lượng giác - Toán 11 Kết nối tri thức...

Gợi ý giải lý thuyết Hàm số lượng giác - SGK Toán 11 Kết nối tri thức Bài 3. Hàm số lượng giác.

1. Định nghĩa hàm số lượng giác

  • Quy tắc đặt tương ứng mỗi số thực x với số thực sinx được gọi là hàm số sin, kí hiệu y = sinx. Tập xác định của hàm số sin là R.
  • Quy tắc đặt tương ứng mỗi số thực x với số thực cosx được gọi là hàm số cos, kí hiệu y = cosx. Tập xác định của hàm số côsin là R.
  • Hàm số cho bằng công thức y=sinαcosαđược gọi là hàm số tang, kí hiệu là y = tanx. Tập xác định của hàm số tang là R{π2+kπ|kZ}.
  • Hàm số cho bằng công thức y=cosαsinαđược gọi là hàm số côtang, kí hiệu là y = cotx. Tập xác định của hàm số côtang là R{kπ|kZ}.

2. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

a, Hàm số chẵn, hàm số lẻ

Cho hàm số y = f(x) có tập xác định là D.

  • Hàm số f(x) được gọi là hàm số chẵn nếu xD thì xDf(x)=f(x). Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.
  • Hàm số f(x) được gọi là hàm số lẻ nếu xD thì xDf(x)=f(x). Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

b, Hàm số tuần hoàn

Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T 0 sao cho với mọi xDta có:

  • x+TDxTD
  • f(x+T)=f(x)

Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.

Advertisements (Quảng cáo)

* Nhận xét:

Các hàm số y = sinx, y=cosx tuần hoàn chu kì 2π.

Các hàm số y = tanx, y=cotx tuần hoàn chu kì π.

3. Đồ thị và tính chất của hàm số y = sinx

  • Tập xác định là R.
  • Tập giá trị là [-1;1].
  • Là hàm số lẻ và tuần hoàn chu kì 2π.
  • Đồng biến trên mỗi khoảng (π2+k2π;π2+k2π) và nghịch biến trên mỗi khoảng (π2+k2π;3π2+k2π).
  • Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.

4. Đồ thị và tính chất của hàm số y = cosx

  • Tập xác định là R.
  • Tập giá trị là [-1;1].
  • Là hàm số chẵn và tuần hoàn chu kì 2π.
  • Đồng biến trên mỗi khoảng (π+k2π;k2π) và nghịch biến trên mỗi khoảng (k2π;π+k2π).
  • Có đồ thị là một đường hình sin đối xứng qua trục tung.

5. Đồ thị và tính chất của hàm số y = tanx

  • Tập xác định là R{π2+kπ|kZ}.
  • Tập giá trị là R.
  • Là hàm số lẻ và tuần hoàn chu kì π.
  • Đồng biến trên mỗi khoảng (π2+kπ;π2+kπ), kZ.
  • Có đồ thị đối xứng qua gốc tọa độ.

6. Đồ thị và tính chất của hàm số y = cotx

  • Tập xác định là R{kπ|kZ}.
  • Tập giá trị là R.
  • Là hàm số lẻ và tuần hoàn chu kì π.
  • Đồng biến trên mỗi khoảng (kπ;π+kπ), kZ.
  • Có đồ thị đối xứng qua gốc tọa độ.

Advertisements (Quảng cáo)