Gợi ý giải lý thuyết Hàm số lượng giác - SGK Toán 11 Kết nối tri thức Bài 3. Hàm số lượng giác.
1. Định nghĩa hàm số lượng giác
- Quy tắc đặt tương ứng mỗi số thực x với số thực sinx được gọi là hàm số sin, kí hiệu y = sinx. Tập xác định của hàm số sin là R.
- Quy tắc đặt tương ứng mỗi số thực x với số thực cosx được gọi là hàm số cos, kí hiệu y = cosx. Tập xác định của hàm số côsin là R.
- Hàm số cho bằng công thức y=sinαcosαđược gọi là hàm số tang, kí hiệu là y = tanx. Tập xác định của hàm số tang là R∖{π2+kπ|k∈Z}.
- Hàm số cho bằng công thức y=cosαsinαđược gọi là hàm số côtang, kí hiệu là y = cotx. Tập xác định của hàm số côtang là R∖{kπ|k∈Z}.
2. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn
a, Hàm số chẵn, hàm số lẻ
Cho hàm số y = f(x) có tập xác định là D.
- Hàm số f(x) được gọi là hàm số chẵn nếu ∀x∈D thì −x∈D và f(−x)=f(x). Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.
- Hàm số f(x) được gọi là hàm số lẻ nếu ∀x∈D thì −x∈D và f(−x)=−f(x). Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.
b, Hàm số tuần hoàn
Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T ≠0 sao cho với mọi x∈Dta có:
- x+T∈Dvà x−T∈D
- f(x+T)=f(x)
Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.
Advertisements (Quảng cáo)
* Nhận xét:
Các hàm số y = sinx, y=cosx tuần hoàn chu kì 2π.
Các hàm số y = tanx, y=cotx tuần hoàn chu kì π.
3. Đồ thị và tính chất của hàm số y = sinx
- Tập xác định là R.
- Tập giá trị là [-1;1].
- Là hàm số lẻ và tuần hoàn chu kì 2π.
- Đồng biến trên mỗi khoảng (−π2+k2π;π2+k2π) và nghịch biến trên mỗi khoảng (π2+k2π;3π2+k2π).
- Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.
4. Đồ thị và tính chất của hàm số y = cosx
- Tập xác định là R.
- Tập giá trị là [-1;1].
- Là hàm số chẵn và tuần hoàn chu kì 2π.
- Đồng biến trên mỗi khoảng (−π+k2π;k2π) và nghịch biến trên mỗi khoảng (k2π;π+k2π).
- Có đồ thị là một đường hình sin đối xứng qua trục tung.
5. Đồ thị và tính chất của hàm số y = tanx
- Tập xác định là R∖{π2+kπ|k∈Z}.
- Tập giá trị là R.
- Là hàm số lẻ và tuần hoàn chu kì π.
- Đồng biến trên mỗi khoảng (−π2+kπ;π2+kπ), k∈Z.
- Có đồ thị đối xứng qua gốc tọa độ.
6. Đồ thị và tính chất của hàm số y = cotx
- Tập xác định là R∖{kπ|k∈Z}.
- Tập giá trị là R.
- Là hàm số lẻ và tuần hoàn chu kì π.
- Đồng biến trên mỗi khoảng (kπ;π+kπ), k∈Z.
- Có đồ thị đối xứng qua gốc tọa độ.