Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 3 trang 91 SGK Hình học 11 Nâng cao, Cho hình...

Câu 3 trang 91 SGK Hình học 11 Nâng cao, Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’, I là giao điểm của hai đường thẳng...

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’, I là giao điểm của hai đường thẳng AB’ và A’B. Chứng minh rằng các đường thẳng GI và CG’ song song với nhau.. Câu 3 trang 91 SGK Hình học 11 Nâng cao - Bài 1: Vectơ trong không gian. Sự đồng phẳng của các vectơ

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’, I là giao điểm của hai đường thẳng AB’ và A’B. Chứng minh rằng các đường thẳng GI và CG’ song song với nhau.

Đặt \(\overrightarrow {AA’}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AC}  = \overrightarrow c \)

Thì \(\overrightarrow {AG}  = {1 \over 3}\left( {\overrightarrow b  + \overrightarrow c } \right),\overrightarrow {AI}  = {1 \over 2}\left( {\overrightarrow a  + \overrightarrow b } \right)\)

Advertisements (Quảng cáo)

Do đó, \(\overrightarrow {GI}  = \overrightarrow {AI}  - \overrightarrow {AG}  = {{3\overrightarrow a  + \overrightarrow b  - 2\overrightarrow c } \over 6}\)

Mặt khác : \(\overrightarrow {AG’}  = {1 \over 3}\left( {\overrightarrow {AA’}  + \overrightarrow {AB’}  + \overrightarrow {AC’} } \right) = \overrightarrow a  + {1 \over 3}\left( {\overrightarrow b  + \overrightarrow c } \right)\)

\( \Rightarrow \overrightarrow {CG’}  = \overrightarrow {AG’}  - \overrightarrow {AC}  = \overrightarrow a  + {1 \over 3}\left( {\overrightarrow b  + \overrightarrow c } \right) - \overrightarrow c  \)

               \(= {{3\overrightarrow a  + \overrightarrow b  - 2\overrightarrow c } \over 3}\)

Vậy \(\overrightarrow {CG’}  = 2\overrightarrow {GI} .\) Ngoài ra, điểm G không thuộc đường thẳng CG’ nên GI và CG’ là hai đường thẳng song song.

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)