Cho ba tia Ox, Oy, Oz không đồng phẳng.
a) Đặt \(\widehat {xOy} = \alpha ,\widehat {yOz} = \beta ,\widehat {{\rm{zOx}}} = \gamma \) . Chứng minh rằng:
\(\cos \alpha + \cos \beta + \cos \gamma > - {3 \over 2}\)
b) Gọi \(O{x_1},O{y_1},O{z_1}\) lần lượt là các tia phân giác của các góc xOy, yOz, zOx. Chứng minh rằng nếu Ox1 và Oy1 vuông góc với nhau thì Oz1 vuông góc với cả Ox1 và Oy1.
Lấy \({E_1},{E_2},{E_3}\) lần lượt thuộc các tia Ox, Oy, Oz sao cho \(O{E_1} = O{E_2} = O{E_3}\).
Đặt \(\overrightarrow {O{E_1}} = \overrightarrow {{e_1}} ,\overrightarrow {O{E_2}} = \overrightarrow {{e_2}} ,\overrightarrow {O{E_3}} = \overrightarrow {{e_3}} \).
a) Do ba tia Ox, Oy, Oz không đồng phẳng nên\({\left( {{{\overrightarrow e }_1} + {{\overrightarrow e }_2} + {{\overrightarrow e }_3}} \right)^2} > 0\),
tức là
\(\eqalign{ & \overrightarrow e _1^2 + \overrightarrow e _2^2 + \overrightarrow e _3^2 \cr&+ 2\left( {{{\overrightarrow e }_1}.{{\overrightarrow e }_2} + {{\overrightarrow e }_2}.{{\overrightarrow e }_3} + {{\overrightarrow e }_3}.\overrightarrow {{e_1}} } \right) > 0 \cr & \Leftrightarrow 3{\rm{O}}E_1^2 + 2OE_1^2\left( {\cos \alpha + \cos \beta + \cos \gamma } \right) > 0 \cr} \)
Advertisements (Quảng cáo)
Vậy \(\cos \alpha + cos\beta + cos\gamma > - {3 \over 2}\)
Dễ thấy
\(\eqalign{ & \overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} //O{x_1} \cr & \overrightarrow {O{E_2}} + \overrightarrow {O{E_3}} //O{y_1} \cr & \overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} //O{z_1} \cr & O{x_1} \bot O{y_1} \Leftrightarrow \left( {\overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} } \right)\left( {\overrightarrow {O{E_2}} + \overrightarrow {O{E_3}} } \right) = 0 \cr} \)
hay \({\overrightarrow {O{E_2}} ^2} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_2}} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_3}} + \overrightarrow {O{E_2}} .\overrightarrow {O{E_3}} = 0\)
Ta có:
\(\eqalign{ & \left( {\overrightarrow {O{E_1}} + \overrightarrow {O{E_2}} } \right)\left( {\overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} } \right) \cr & = {\overrightarrow {O{E_1}} ^2} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_2}} + \overrightarrow {O{E_2}} .\overrightarrow {O{E_3}} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_3}} \cr} \)
\(= 0\)
Vậy \(O{x_1} \bot O{z_1}\)
Tương tự, ta cũng có \(O{y_1} \bot O{z_1}\)