Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Câu hỏi 2 trang 94 Hình học 11: Bài 2. Hai đường...

Câu hỏi 2 trang 94 Hình học 11: Bài 2. Hai đường thẳng vuông góc...

Câu hỏi 2 trang 94 SGK Hình học 11. Bài 2. Hai đường thẳng vuông góc

Cho hình lập phương ABCD.A’B’C’D’

a) Hãy phân tích các vecto \(\overrightarrow {AC’} ;\,\overrightarrow {BD} \)  theo ba vecto \(\overrightarrow {AB} ;\,\overrightarrow {AD} ;\,\overrightarrow {{\rm{AA}}} {\rm{‘}}\)

b) Tính cos (\(\overrightarrow {AC’} ;\,\overrightarrow {BD} \)) và từ đó suy ra \(\overrightarrow {AC’} ;\,\overrightarrow {BD} \)  vuông góc với nhau

Advertisements (Quảng cáo)

\(\eqalign{
& a)\, \cr
& \overrightarrow {AC’} = \overrightarrow {AC} {\rm{ + }}\overrightarrow {{\rm{AA}}} {\rm{‘}}\,{\rm{ = }}\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA}}} {\rm{‘}} \cr
& \overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \cr
& b) \cr
& \cos (\overrightarrow {AC’} ,\overrightarrow {BD} ) = {{\overrightarrow {AC’} .\overrightarrow {BD} } \over {|\overrightarrow {AC’} |.|\overrightarrow {BD} |}} \cr
& \overrightarrow {AC’} ,\overrightarrow {BD} = (\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA’}}} ).(\overrightarrow {AD} - \overrightarrow {AB} ) \cr
& = (\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA’}}} ).\overrightarrow {AD} - (\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA’}}} ).\overrightarrow {AB} \cr
& = \overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AD} .\overrightarrow {AD} + \overrightarrow {{\rm{AA’}}} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AB} - \overrightarrow {AD} .\overrightarrow {AB} - \overrightarrow {{\rm{AA’}}} .\overrightarrow {AB} \cr} \)

Hình lập phương ABCD.A’B’C’D’ nên AB, AD, AA’ đôi một vuông góc với nhau

\(\eqalign{
& (1) = \overrightarrow 0 + \overrightarrow {A{D^2}} + \overrightarrow 0 - \overrightarrow {A{B^2}} - \overrightarrow 0 - \overrightarrow 0 = 0\,\,(AB = AD) \cr
& \Rightarrow \cos (\overrightarrow {AC’} ,\overrightarrow {BD} ) = {{\overrightarrow {AC’} .\overrightarrow {BD} } \over {|\overrightarrow {AC’} |.|\overrightarrow {BD} |}} = {{\overrightarrow 0 } \over {\overrightarrow {AC’} ,\overrightarrow {BD} }} = 0 \cr
& \Rightarrow (\overrightarrow {AC’} ,\overrightarrow {BD} ) = {90^0} \cr} \)

Vậy hai vecto trên vuông góc với nhau.

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)