Đạo hàm \(f’\left( x \right)\) của hàm số \(y = f\left( x \right)\) có đồ thị như Hình 4. Xét tính đơn điệu và tìm các điểm cực trị của hàm số \(y = f\left( x \right)\).
Từ đồ thị hàm số \(y = f’\left( x \right)\), lập bảng biến thiên của hàm số \(y = f\left( x \right)\) rồi xác định tính đồng biến, nghịch biến, cực trị của hàm số.
Advertisements (Quảng cáo)
Từ đồ thị, ta có \(f’\left( x \right) > 0\) trên các khoảng \(\left( { - 3; - 2} \right)\) và \(\left( {1;2} \right)\), \(f’\left( x \right)
Hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng \(\left( { - 3; - 2} \right)\) và \(\left( {1;2} \right)\), nghịch biến trên khoảng \(\left( { - 2;1} \right)\).
Hàm số đạt cực đại tại \(x = - 2\) và đạt cực tiểu tại \({\rm{x}} = 1\).