Trang chủ Lớp 12 SBT Toán 12 - Chân trời sáng tạo Bài 8 trang 18 SBT Toán 12 – Chân trời sáng tạo:...

Bài 8 trang 18 SBT Toán 12 - Chân trời sáng tạo: Từ một miếng bìa hình vuông có cạnh bằng 12 cm...

Sử dụng công thức tính thể tích hình hộp chữ nhật để tính thể tích \(V\left( x \right)\). Giải chi tiết - Bài 8 trang 18 sách bài tập toán 12 - Chân trời sáng tạo - Bài 2. Giá trị lớn nhất - giá trị nhỏ nhất của hàm số. Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng (x) (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình...

Question - Câu hỏi/Đề bài

Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng \(x\) (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm \(x\) để thể tích của hình hộp là lớn nhất.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng công thức tính thể tích hình hộp chữ nhật để tính thể tích \(V\left( x \right)\), sau đó tìm giá trị lớn nhất của hàm số \(V\left( x \right)\).

Answer - Lời giải/Đáp án

Theo đề bài ta có: Cạnh của hộp là: \(12 - 2{\rm{x}}\left( {cm} \right)\).

Chiều cao của hộp là: \({\rm{x}}\left( {cm} \right)\).

Advertisements (Quảng cáo)

Thể tích của hộp là: \(V\left( x \right) = x{\left( {12 - 2{\rm{x}}} \right)^2} = 4{{\rm{x}}^3} - 48{{\rm{x}}^2} + 144{\rm{x}}\left( {c{m^3}} \right)\).

Vì cạnh của hộp không âm nên \(12 - 2{\rm{x}} \ge 0 \Leftrightarrow x \le 6\)

Xét hàm số \(V\left( x \right) = 4{{\rm{x}}^3} - 48{{\rm{x}}^2} + 144{\rm{x}}\) trên đoạn \(\left[ {0;6} \right]\).

Ta có: \(V’\left( x \right) = 12{{\rm{x}}^2} - 96{\rm{x}} + 144\)

\(V’\left( x \right) = 0 \Leftrightarrow x = 6\) hoặc \(x = 2\).

\(V\left( 0 \right) = 0;V\left( 2 \right) = 128;V\left( 6 \right) = 0\)

Vậy \(\mathop {\max }\limits_{\left[ {0;6} \right]} V\left( x \right) = V\left( 2 \right) = 128\).

Vậy với \(x = 2\left( {cm} \right)\) thì thể tích của hình hộp là lớn nhất.

Advertisements (Quảng cáo)