Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Bài 48 trang 63 SBT Hình học lớp 12 Nâng Cao: Gọi...

Bài 48 trang 63 SBT Hình học lớp 12 Nâng Cao: Gọi r và h lần lượt là bán kính đáy...

Gọi r và h lần lượt là bán kính đáy . Bài 48 trang 63 Sách bài tập Hình học lớp 12 Nâng cao - Ôn tập chương II - Mặt cầu mặt trụ mặt nón

Gọi rh lần lượt là bán kính đáy và chiều cao của một hình nón. Kí hiệu V1,V2V1,V2 lần lượt là thể tích hình nón và thể tích hình cầu nội tiếp hình nón.

1) Tỉ số V1V2V1V2 theo r, h.

2) Khi rh thay đổi, tìm giá trị bé nhất của tỉ số V1V2V1V2.

Gọi (P) là mặt phẳng đi qua trục của hình nón thì (P) cắt hình nón theo tam giác cân SAB, cắt mặt cầu theo đường tròn lớn, đường tròn này nội tiếp tam giác cân. Khi đó, bán kính r1r1 của hình cầu nội tiếp hình nón được tính bởi công thức

r1=rhr+h2+r2.r1=rhr+h2+r2.

1) Thể tích hình nón là V1=13πr2h.V1=13πr2h.

Thể tích hình cầu nội tiếp hình nón là V2=4π3(rhr+r2+h2)3.V2=4π3(rhr+r2+h2)3.

Vậy V1V2=14(r+r2+h2)3rh2.V1V2=14(r+r2+h2)3rh2.

Advertisements (Quảng cáo)

2) V1V2=14(1+h2r2+1)3h2r2=14(1+1+x)3x,V1V2=14(1+h2r2+1)3h2r2=14(1+1+x)3x, ở đó h2r2=x>0.h2r2=x>0.

Xét f(x)=(1+1+x)34x,f(x)=(1+x+1)2(x221+x)4.2x2x+1.

(1+x+1)24.2x2x+1>0 nên khi xét dấu của f(x), ta chỉ cần xét dấu của g(x)=x221+x. Ta có g(x)=11x+1.

Dễ thấy g’(x) > 0 vì khi x > 0 thì 1x+1<1, đồng thời g(x) = 0x=8.

Vậy g(x) là hàm tăng trên miền x > 0g(8) = 0 nên

với 0<x8 thì g(x)0;

với 8<x<+ thì g(x) > 0.

Bảng biến thiên của f(x)

Vậy giá trị bé nhất của V1V2 bằng 2.

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)