Gọi r và h lần lượt là bán kính đáy và chiều cao của một hình nón. Kí hiệu V1,V2V1,V2 lần lượt là thể tích hình nón và thể tích hình cầu nội tiếp hình nón.
1) Tỉ số V1V2V1V2 theo r, h.
2) Khi r và h thay đổi, tìm giá trị bé nhất của tỉ số V1V2V1V2.
Gọi (P) là mặt phẳng đi qua trục của hình nón thì (P) cắt hình nón theo tam giác cân SAB, cắt mặt cầu theo đường tròn lớn, đường tròn này nội tiếp tam giác cân. Khi đó, bán kính r1r1 của hình cầu nội tiếp hình nón được tính bởi công thức
r1=rhr+√h2+r2.r1=rhr+√h2+r2.
1) Thể tích hình nón là V1=13πr2h.V1=13πr2h.
Thể tích hình cầu nội tiếp hình nón là V2=4π3(rhr+√r2+h2)3.V2=4π3(rhr+√r2+h2)3.
Vậy V1V2=14(r+√r2+h2)3rh2.V1V2=14(r+√r2+h2)3rh2.
Advertisements (Quảng cáo)
2) V1V2=14(√1+h2r2+1)3h2r2=14(1+√1+x)3x,V1V2=14(√1+h2r2+1)3h2r2=14(1+√1+x)3x, ở đó h2r2=x>0.h2r2=x>0.
Xét f(x)=(1+√1+x)34x,f′(x)=(√1+x+1)2(x−2−2√1+x)4.2x2√x+1.
Vì (√1+x+1)24.2x2√x+1>0 nên khi xét dấu của f(x), ta chỉ cần xét dấu của g(x)=x−2−2√1+x. Ta có g′(x)=1−1√x+1.
Dễ thấy g’(x) > 0 vì khi x > 0 thì 1√x+1<1, đồng thời g(x) = 0⇔x=8.
Vậy g(x) là hàm tăng trên miền x > 0 và g(8) = 0 nên
với 0<x≤8 thì g(x)≤0;
với 8<x<+∞ thì g(x) > 0.
Bảng biến thiên của f(x)
Vậy giá trị bé nhất của V1V2 bằng 2.