Tìm cực trị của các hàm số sau:
a) \(y = \sin 2x\)
b) \(y = \cos x - \sin x\)
c) \(y = {\sin ^2}x\)
Hướng dẫn làm bài:
a) \(y = \sin 2x\)
Hàm số có chu kỳ \(T = \pi \)
Xét hàm số \(y = \sin 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , ta có:
\(y’ = 2\cos 2x\)
\(y = 0 \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} \hfill \cr
x = {{3\pi } \over 4} \hfill \cr} \right.\)
Bảng biến thiên:
Do đó trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , hàm số đạt cực đại tại \({\pi \over 4}\) , đạt cực tiểu tại \({{3\pi } \over 4}\) và \({y_{CD}} = y({\pi \over 4}) = 1;\,\,{y_{CT}} = y({{3\pi } \over 4}) = - 1\)
Vậy trên R ta có:
\({y_{CĐ}} = y({\pi \over 4} + k\pi ) = 1;\)
\({y_{CT}} = y({{3\pi } \over 4} + k\pi ) = - 1,k \in Z\)
Advertisements (Quảng cáo)
b)
Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).
\(\eqalign{
& y’ = - \sin x - \cos x \cr
& y’ = 0 < => \tan x = - 1 < = > x = - {\pi \over 4} + k\pi ,k \in Z \cr} \)
Lập bảng biến thiên trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\)
Hàm số đạt cực đại tại \(x = - {\pi \over 4} + k2\pi \) , đạt cực tiểu tại \(x = {{3\pi } \over 4} + k2\pi (k \in Z)\) và
\({y_{CĐ}} = y( - {\pi \over 4} + k2\pi ) = \sqrt 2\) ;
\({y_{CT}} = y({{3\pi } \over 4} + k2\pi ) = - \sqrt 2 (k \in Z)\)
c) Ta có: \(y = {\sin ^2}x = {{1 - \cos 2x} \over 2}\)
Do đó, hàm số đã cho tuần hoàn với chu kỳ \(\pi \). Ta xét hàm số \(y = {1 \over 2} - {1 \over 2}\cos 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) .
\(\eqalign{
& y’ = \sin 2x \cr
& y’ = 0 < = > \sin 2x = 0 < = > x = k.{\pi \over 2}(k \in Z) \cr} \)
Lập bảng biến thiên trên đoạn \(\left[ {0,\pi } \right]\)
Từ đó, ta thấy hàm số đạt cực tiểu tại \(x = k.{\pi \over 2}\) với k chẵn, đạt cực đại tại \(x = k.{\pi \over 2}\) với k lẻ, và
\({y_{CT}} = y(2m\pi ) = 0;\)
\({y_{CĐ}} = y((2m + 1){\pi \over 2}) = 1(m \in Z)\)