Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 1.29 trang 22 SBT Giải tích 12: Tìm các tiệm cận...

Bài 1.29 trang 22 SBT Giải tích 12: Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số...

Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau. Bài 1.29 trang 22 Sách bài tập (SBT) Giải tích 12 - Bài 4. Đường tiệm cận

Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau:

a)  \(y = {{2x - 1} \over {x + 2}}\);                                                          

b) \(y = {{3 - 2x} \over {3x + 1}}\)

c) \(y = {5 \over {2 - 3x}}\)                                                      

d) \(y = {{ - 4} \over {x + 1}}\)

Hướng dẫn làm bài:

a) \(y = {{2x - 1} \over {x + 2}}\)

Ta có:  \(\mathop {\lim }\limits_{x \to  - {2^ + }} {{2x - 1} \over {x + 2}} =  - \infty ,\mathop {\lim }\limits_{x \to  - {2^ - }} {{2x - 1} \over {x + 2}} =  + \infty \)  nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.

Advertisements (Quảng cáo)

Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } {{2x - 1} \over {x + 2}} = \mathop {\lim }\limits_{x \to  \pm \infty } {{2 - {1 \over x}} \over {1 + {2 \over x}}} = 2\)  nên đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.

b) Từ \(\mathop {\lim }\limits_{x \to {{( - {1 \over 3})}^ + }} {{3 - 2x} \over {3x + 1}} =  + \infty ;\mathop {\lim }\limits_{x \to {{( - {1 \over 3})}^ - }} {{3 - 2x} \over {3x + 1}} =  - \infty \)  , ta có \(x =  - {1 \over 3}\) là tiệm cận đứng

Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } {{3 - 2x} \over {3x + 1}} = \mathop {\lim }\limits_{x \to  \pm \infty } {{{3 \over x} - 2} \over {3 + {1 \over x}}} =  - {2 \over 3}\) nên đường thẳng \(y =  - {2 \over 3}\) là tiệm cận ngang.

c) Vì \(\mathop {\lim }\limits_{x \to {{({2 \over 3})}^ + }} {5 \over {2 - 3x}} =  - \infty ;\mathop {\lim }\limits_{x \to {{({2 \over 3})}^ - }} {5 \over {2 - 3x}} =  + \infty \) nên \(x = {2 \over 3}\)  là tiệm cận đứng,

Do  \(\mathop {\lim }\limits_{x \to  \pm \infty } {5 \over {2 - 3x}} = 0\) nên y = 0 là tiệm cận ngang.

d) Do  \(\mathop {\lim }\limits_{x \to  - {1^ + }} {{ - 4} \over {x + 1}} =  - \infty ;\mathop {\lim }\limits_{x \to  - {1^ - }} {{ - 4} \over {x + 1}} =  + \infty \) nên x  = -1 là tiệm cận đứng.

Vì  \(\mathop {\lim }\limits_{x \to  \pm \infty } {{ - 4} \over {x + 1}} = 0\) nên y = 0 là tiệm cận ngang.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)