Tính các tích phân sau:
a) π4∫0cos2x.cos2xdxπ4∫0cos2x.cos2xdx
b) 1∫12exe2x−1dx1∫12exe2x−1dx
c) 1∫0x+2x2+2x+1ln(x+1)dx1∫0x+2x2+2x+1ln(x+1)dx
d) π4∫0xsinx+(x+1)cosxxsinx+cosxdxπ4∫0xsinx+(x+1)cosxxsinx+cosxdx
Hướng dẫn làm bài
Advertisements (Quảng cáo)
a) 14(1+π4)14(1+π4) . HD: 1+cos2x2=cos2x1+cos2x2=cos2x
b) 12ln(e−1)(√e+1)(e+1)(√e−1)12ln(e−1)(√e+1)(e+1)(√e−1) . HD:exe2x−1=12(exex−1−exex+1)exe2x−1=12(exex−1−exex+1)
c) 12(ln22−ln2+1)12(ln22−ln2+1) . HD: x+2x2+2x+1ln(x+1)=ln(x+1)x+1+ln(x+1)(x+1)2x+2x2+2x+1ln(x+1)=ln(x+1)x+1+ln(x+1)(x+1)2
d) π4+ln(1+π4)−12ln2π4+ln(1+π4)−12ln2 .
HD: xsinx+(x+1)cosxxsinx+cosx=1+xcosxxsinx+cosxxsinx+(x+1)cosxxsinx+cosx=1+xcosxxsinx+cosx và d(xsinx+cosx)=xcosxdxd(xsinx+cosx)=xcosxdx