Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Bài 6 trang 37 Toán 12 tập 1 – Chân trời sáng...

Bài 6 trang 37 Toán 12 tập 1 - Chân trời sáng tạo: Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}}\) là...

Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu. Hướng dẫn giải bài tập 6 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo Bài tập cuối chương 1. Tiệm cận xiên của đồ thị hàm số (y = frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}}) là đường thẳng có phương trìnhA. (y = 2x + 3) B. (y = x + 3) C. (y = 2x + 1) D...

Question - Câu hỏi/Đề bài

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}}\) là đường thẳng có phương trình

A. \(y = 2x + 3\) B. \(y = x + 3\) C. \(y = 2x + 1\) D. \(y = x + 1\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to - \infty } [f(x) - (ax + b)] = 0\) hoặc \(\mathop {\lim }\limits_{x \to + \infty } [f(x) - (ax + b)] = 0\)

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Chọn A

Tập xác định: \(D = \mathbb{R}\backslash \{ - 1;1\} \)

Ta có: \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to + \infty } = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = 2\)

\(b = \mathop {\lim }\limits_{x \to + \infty } (y - ax) = \mathop {\lim }\limits_{x \to + \infty } (\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - 2x) = 3\)

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } [y - (ax + b)] = \mathop {\lim }\limits_{x \to + \infty } [\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - (2x + 3)] = 0\)

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x + 3

Advertisements (Quảng cáo)