Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Bài 8 trang 37 Toán 12 tập 1 – Chân trời sáng...

Bài 8 trang 37 Toán 12 tập 1 - Chân trời sáng tạo: Cho hàm \(y = \frac{{ - 2x - 3}}{{4 - x}}\). Trong các khẳng định sau, khẳng định nào đúng?...

Hàm số y = f(x) gọi là đồng biến (tăng) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) < f(\({x_2}\)). Lời giải bài tập, câu hỏi bài tập 8 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo Bài tập cuối chương 1. Cho hàm \(y = \frac{{ - 2x - 3}}{{4 - x}}\). Trong các khẳng định sau, khẳng định nào đúng? A. Hàm số đồng biến trên (\( - \infty \); –4) và nghịch biến trên (–4; \( + \infty \))...

Question - Câu hỏi/Đề bài

Cho hàm \(y = \frac{{ - 2x - 3}}{{4 - x}}\). Trong các khẳng định sau, khẳng định nào đúng?

A. Hàm số đồng biến trên (\( - \infty \); –4) và nghịch biến trên (–4; \( + \infty \)).

B. Hàm số đồng biến trên (\( - \infty \); 4) và (4; \( + \infty \)).

C. Hàm số nghịch biến trên (\( - \infty \); 4) và (4; \( + \infty \)).

D. Hàm số nghịch biến trên (\( - \infty \); –4) và (–4; \( + \infty \)).

Advertisements (Quảng cáo)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Hàm số y = f(x) gọi là đồng biến (tăng) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) < f(\({x_2}\)). Hàm số y = f(x) gọi là nghịch biến (giảm) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) > f(\({x_2}\)).

Answer - Lời giải/Đáp án

Chọn C

Tập xác định: \(D = \mathbb{R}\backslash \{ 4\} \)

\(y’ = \frac{{ - 5}}{{{{(4 - x)}^2}}} < 0\forall x \in D\) nên hàm số luôn nghịch biến trên khoảng (\( - \infty \); 4) và (4; \( + \infty \))

Advertisements (Quảng cáo)