b) Tìm các giao điểm của đường cong (C) và parabol:
c) Viết phương trình các tiếp tuyến của (C) và (P) tại mỗi giao điểm của chúng.
d) Xác định các khoảng trên đó (C) nằm phía trên hoặc phía dưới (C).. Bài 57 trang 55 SGK giải tích 12 nâng cao - Bài 8. Một số bài toán thường gặp về đồ thị
Bài 57
a) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số:
\(f\left( x \right) = 2{x^3} + 3{x^2} + 1\)
b) Tìm các giao điểm của đường cong \((C)\) và parabol:
\((P):\,\,\,g\left( x \right) = 2{x^2} + 1\)
c) Viết phương trình các tiếp tuyến của \((C)\) và \((P)\) tại mỗi giao điểm của chúng.
d) Xác định các khoảng trên đó \((C)\) nằm phía trên hoặc phía dưới \((C)\).
a) Tập xác định: \(D=\mathbb R\)
\(f'(x)=6x^2+6x\)
\(f'(x)=0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - 1 \hfill \cr} \right.\)
Bảng biến thiên:
- Hàm số đông biến trên \(( - \infty ;-1)\) và \((0; + \infty )\)
- Hàm số nghịch biến trên \((-1;0)\)
- Hàm số đạt cực tại \(x=-1;y_{CĐ}=2\)
- Hàm số đạt cực tiểu tại \(x=0;y_{CT}=1\)
\(\mathop {\lim }\limits_{x \to \pm \infty } y = \pm \infty \)
Advertisements (Quảng cáo)
Đồ thị giao trục \(Oy\) tại điểm \((0;1)\)
b) Hoành độ giao điểm của đường cong \((C)\) và paraobol \((P)\) là nghiệm của phương trình:
\(\eqalign{
& \,\,\,\,2{x^3} + 3{x^2} + 1 = 2{x^2} + 1 \Leftrightarrow 2{x^3} + {x^2} = 0 \cr
& \Leftrightarrow {x^2}\left( {2x + 1} \right) = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - {1 \over 2} \hfill \cr} \right. \cr} \)
Với \(x = 0\) ta có \(y = 1\); với \(x = - {1 \over 2}\) ta có \(y = {3 \over 2}\)
Ta có giao điểm \(A(0;1)\) và \(B\left( { - {1 \over 2};{3 \over 2}} \right)\)
c) \(f’\left( x \right) = 6{x^2} + 6x;\,g’\left( x \right) = 4x\)
\(f’\left( 0 \right) = 0;\,g’\left( 0 \right) = 0\).
Đường thẳng \(y = 1\) là tiếp tuyến chung của \((C)\) và \((P)\) tại điểm \(A(0;1)\).
\(f’\left( { - {1 \over 2}} \right) = - {3 \over 2}\). Phương trình tiếp tuyến của \((C)\) tại điểm \(B\) là:
\(y = - {3 \over 2}\left( {x + {1 \over 2}} \right) + {3 \over 2}\) hay \(y = - {3 \over 2}x + {3 \over 4}\)
\(g’\left( { - {1 \over 2}} \right) = - 2\). Phương trình tiếp tuyến của parabol \((P)\) tại điểm \(B\) là:
\(y = - 2\left( {x + {1 \over 2}} \right) + {3 \over 2}\,hay\,\,y = - 2x + {1 \over 2}\)
d) Xét hiệu \(f\left( x \right) - g\left( x \right) = 2{x^3} + 3{x^2} + 1 - 2{x^2} - 1 = 2{x^3} + {x^2} = {x^2}\left( {2x + 1} \right)\)
Xét dấu \(f\left( x \right) - g\left( x \right)\):
Trên khoảng \(\left( { - \infty ; - {1 \over 2}} \right)\) \((C)\) nằm phía dưới \((P)\)
Trên các khoảng \(\left( { - {1 \over 2};0} \right)\) và \(\left( {0; + \infty } \right)\) \((C)\) nằm phía trên \((P)\).