Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 60 trang 56 SGK giải tích 12 nâng cao, Chứng minh...

Bài 60 trang 56 SGK giải tích 12 nâng cao, Chứng minh rằng các đồ thị của hai hàm số: tiếp xúc với nhau. Xác định tiếp điểm của hai đường cong trên và viết phương trình tiếp...

Chứng minh rằng các đồ thị của hai hàm số: tiếp xúc với nhau. Xác định tiếp điểm của hai đường cong trên và viết phương trình tiếp tuyến chung tại điểm đó.. Bài 60 trang 56 SGK giải tích 12 nâng cao - Bài 8. Một số bài toán thường gặp về đồ thị

Bài 60. Chứng minh rằng các đồ thị của hai hàm số: \(f\left( x \right) = {{{x^2}} \over 2} + {3 \over 2}x\) và \(g\left( x \right) = {{3x} \over {x + 2}}\) tiếp xúc với nhau. Xác định tiếp điểm của hai đường cong trên và viết phương trình tiếp tuyến chung tại điểm đó.

Hoành độ tiếp điểm của hai đường cong đã cho là nghiệm của hệ phương trình:

Advertisements (Quảng cáo)

\(\eqalign{
(I)\,\,& \left\{ \matrix{
{{{x^2}} \over 2} + {3 \over 2}x = {{3x} \over {x + 2}} \hfill \cr
{\left( {{{{x^2}} \over 2} + {3 \over 2}x} \right)’} = {\left( {{{3x} \over {x + 2}}} \right)’} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{{{x^2}} \over 2} + {3 \over 2}x = {{3x} \over {x + 2}}\,(1) \hfill \cr
x + {3 \over 2} = {6 \over {{{\left( {x + 2} \right)}^2}}}\,(2) \hfill \cr} \right. \cr
& (1)\, \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
{{x + 3} \over 2} = {3 \over {x + 2}} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
{x^2} + 5x = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - 5 \hfill \cr} \right. \cr} \)

+) \(x=0\) thỏa mãn (2)
+) \(x =-5\) không thỏa mãn (2)
Hệ phương trình (I) có \(1\) nghiệm duy nhất \(x = 0\). Vậy hai đường cong tiếp xúc với nhau tại gôc tọa độ \(O\); \(y’\left( 0 \right) = {3 \over 2}\). Phương trình tiếp tuyến chung của hai đường cong tại điểm gốc là \(y = {3 \over 2}x.\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: