Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 62 trang 57 SGK giải tích 12 nâng cao,Khảo sát sự...

Bài 62 trang 57 SGK giải tích 12 nâng cao,Khảo sát sự biến thiên và vẽ đồ thị hàm số: b) Chứng minh rằng giao điểm I của hai đường tiệm cận của đường cong đã cho là tâm đối...

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số:
b) Chứng minh rằng giao điểm I của hai đường tiệm cận của đường cong đã cho là tâm đối xứng của nó.. Bài 62 trang 57 SGK giải tích 12 nâng cao - Bài 8. Một số bài toán thường gặp về đồ thị

Bài 62.

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số: \(y = {{x - 1} \over {x + 1}}\)

b) Chứng minh rằng giao điểm \(I\) của hai đường tiệm cận của đường cong đã cho là tâm đối xứng của nó.

Tập xác định:

 \(\eqalign{
& D = R\backslash \left\{ { - 1} \right\} \cr
& \cr} \)

Sự biến thiên:

\(y’ = {2 \over {{{(x + 1)}^2}}} > 0\,\forall x \in D\)

Hàm số đồng biến trên khoảng \(( - \infty ; - 1)\) và \(( - 1; + \infty )\)

Giới hạn:

\(\mathop {\lim y}\limits_{x \to  - {1^ - }}  =  + \infty ;\,\mathop {\lim y}\limits_{x \to  - {1^ + }}  =  - \infty \)

Tiệm cận đứng: \(x=-1\)

\(\mathop {\lim y}\limits_{x \to  \pm \infty }  = 1\)

Advertisements (Quảng cáo)

Tiệm cận ngang: \(y=1\) 

Bảng biến thiên:

Đồ thị giao \(Ox\) tại điểm \((1;0)\)

Đồ thị giao \(Oy\) tại điểm \((0;-1)\)

b) Giao điểm của hai tiệm cận của đường cong là \(I(-1;1)\)

Công thức đổi trục tịnh tiến theo vecto \(\overrightarrow {OI} \) là 

\(\left\{ \matrix{
x = X - 1 \hfill \cr
y = Y + 1 \hfill \cr} \right.\)

Phương trình đường cong trong hệ tọa độ \(IXY\) là:

\(Y + 1 = {{X - 1 - 1} \over {X - 1 + 1}} \Leftrightarrow Y + 1 = {{X - 2} \over X} \Leftrightarrow Y =  - {2 \over X}\)

Đây là hàm số lẻ nên đồ thị nhận gốc \(I\) làm tâm đối xứng.

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: