Chứng minh rằng 3,5 < α < 3,6. Câu 2 trang 211 SGK Giải tích 12 Nâng cao - Câu hỏi và bài tập
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số f(x) = 2x3 – 3x2 – 12x – 10
b) Chứng minh rằng phương trình 2x3 – 3x2 – 12x – 10 = 0 có nghiệm thực duy nhất.
c) Gọi nghiệm thực duy nhất của hàm số là \(α\).
Chứng ming rằnh \(3,5 < α < 3,6\).
Giải
a) TXD: \(D =\mathbb R\)
f ’(x) = 6(x2 – x – 2)
\(f'(x) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
x = 2 \hfill \cr} \right.\)
Hàm số đạt cực đại tại \(x=1;\;y_{CĐ}=-3\)
Advertisements (Quảng cáo)
Hàm số đạt cực tiểu tại \(x=2;\;y_{CĐ}=-30\)
\(\mathop {\lim }\limits_{x \to \pm \infty } f(x) = \pm \infty \)
Ta có bảng biến thiên:
Đồ thị
b) Đồ thị hàm số y = 2x3 – 3x2 – 12x – 10 cắt trục hoành tại một điểm duy nhất nên phương trình đã cho có nghiệm thực duy nhất.
c) Ta có: \(f(3, 5).f(3, 6) < 0\)
Vì vậy, phương trình có nghiệm \(α\) duy nhất thỏa mãn điều kiện \(3,5 < α < 3,6\).