Bài 5. Chứng minh rằng:
a) \(\left ( \frac{1}{3} \right )^{2\sqrt{5}}\) < \(\left ( \frac{1}{3} \right )^{3\sqrt{2}}\);
b) \(7^{\sqrt[6]{3}}\) > \(7^{\sqrt[3]{6}}\).
Advertisements (Quảng cáo)
Các em học sinh nên sử dụng các tính chất của lũy thừa dể giải bài toán này
a) ta có \(2\sqrt5\)= \(\sqrt{2^{2}.5}= \sqrt{20}\) ; \(3\sqrt2\) = \(\sqrt{3^{2}.2}\)= \(\sqrt {18}=> 2\sqrt5 > 3\sqrt2\)
=> \(\left ( \frac{1}{3} \right )^{2\sqrt{5}}\) < \(\left ( \frac{1}{3} \right )^{3\sqrt{2}}\)
b) \(6\sqrt3 = \sqrt{6^{2}.3}\) = \(\sqrt {108}\) ; \(3\sqrt 6\) = \(\sqrt{3^{2}.6}\)= \(\sqrt{54}\) \(=> 6\sqrt3 > 3\sqrt6 => \) \(7^{\sqrt[6]{3}}\) > \(7^{\sqrt[3]{6}}\)