Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 7 trang 100 Hình học 12: Trong không gian Oxyz cho...

Bài 7 trang 100 Hình học 12: Trong không gian Oxyz cho hai đường thẳng d1 và d2...

Bài 7 trang 100 SGK Hình học 12: ÔN TẬP CUỐI NĂM - HÌNH HỌC 12. Trong không gian Oxyz cho hai đường thẳng d1 và d2 có phương trình.

Bài 7. Trong không gian \(Oxyz\) cho hai đường thẳng d1 và d2 có phương trình

d1:\(\left\{ \matrix{
x = 1 - t \hfill \cr
y = t \hfill \cr
z = - t \hfill \cr} \right.\)           và     d2:\(\left\{ \matrix{
x = 2k \hfill \cr
y = - 1 + k \hfill \cr
z = k. \hfill \cr} \right.\)

a) Chứng minh rằng hai đường thẳng d1 và d2 chéo nhau.

b) Viết phương trình mặt phẳng \((α)\) chứa d1 và song song với d2.

a) (d1) đi qua điểm \(M(1; 0; 0)\) và có vectơ chỉ phương \(\overrightarrow a  = (-1; 1; -1)\)

(d2) đi qua điểm \(M'(0; -1; 0)\) và có vectơ chỉ phương \(\overrightarrow {a’}  = (2; 1; 1)\)

Advertisements (Quảng cáo)

Vì \(\overrightarrow a \) và \(\overrightarrow {a’} \) không cùng phương nên d1 và dcó thể chéo nhau hoặc cắt nhau. Xét giao của d1 và d2:\(\left\{ \matrix{
1 - t = 2k \hfill \cr
t = - 1 + k \hfill \cr
- 1 = k \hfill \cr} \right.\), hệ vô nghiệm

do đó d1 và d2 không cắt nhau. Từ đó suy ra d1 và d2 chéo nhau.

b) Mặt phẳng \((α)\) chứa (d1) và song song với d2 thì \((α)\) qua điểm \(M_1(1; 0; 0)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right]= (2; -1; -3)\)

Phương trình mặt phẳng \((α)\) có dạng:

\(2(x - 1) - (y - 0) - 3(z - 0) = 0\)

hay \(2x - y - 3z - 2 = 0\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)