Bài 8. Cho điểm \(M(1 ; 4 ; 2)\) và mặt phẳng \((α): x + y + z -1 = 0\).
a) Tìm tọa độ điểm \(H\) là hình chiếu vuông góc của điểm \(M\) trên mặt phẳng \((α)\) ;
b) Tìm tọa độ điểm \(M’\) đối xứng với \(M\) qua mặt phẳng \((α)\).
c) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \((α)\).
a) Xét đường thẳng \(d\) qua \(M\) và \(d ⊥ (α)\).
Khi đó \(H\) chính là giao điểm của \(d\) và \((α)\).
Vectơ \(\overrightarrow{n}(1 ; 1 ; 1)\) là vectơ pháp tuyến của \((α)\) nên \(\overrightarrow{n}\) là vectơ chỉ phương của \(d\).
Phương trình tham số của đường thẳng \(d\) có dạng: \(\left\{\begin{matrix} x=1+t & \\ y=4+t & \\ z=2+t & \end{matrix}\right.\).
Thay tọa độ \(x ; y ; z\) của phương trình trên vào phương trình xác định \((α)\), ta có:
\(3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0)\).
Advertisements (Quảng cáo)
b) Gọi \(M'(x ; y ; z)\) là điểm đối xứng của \(M\) qua mặt phẳng \((α)\), thì hình chiếu vuông góc \(H\) của \(M\) xuống \((α)\) chính là trung điểm của \(MM’\).
Ta có:
\(\frac{x+1}{2}=-1 => x = -3\) ;
\(\frac{y+4}{2}=2 => y = 0\) ;
\(\frac{z+2}{2}=0 => z = -2\).
Vậy \(M'(-3 ; 0 ;2)\).
c) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \((α)\)
Cách 1: \(d(M,(\alpha ))=\frac{|1+4+2-1|}{\sqrt{1+1+1}}=\frac{6}{\sqrt{3}}=2\sqrt{3}\).
Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:
\(d(M,(α) )= MH\) = \(\sqrt{2^{2}+2^{2}+2^{2}}=2\sqrt{3}\).