Bài 4. Tìm \(a\) để hai đường thẳng sau đây cắt nhau:
d: \(\left\{\begin{matrix} x=1+at & \\ y=t & \\ z= -1+2t & \end{matrix}\right.\) d‘: \(\left\{\begin{matrix} x=1-t’ & \\ y=2+2t’ & \\ z= 3-t’. & \end{matrix}\right.\)
Xét hệ \(\left\{\begin{matrix} 1+at=1-s &(1)\\ t = 2+2s & (2)\\ -1+2t=3-s & (3) \end{matrix}\right.\)
Advertisements (Quảng cáo)
Hai đường thẳng d và d‘ cắt nhau khi và chỉ khi hệ có nghiệm duy nhất.
Nhân hai vế của phương trình (3) với 2 rồi cộng vế với vế vào phương trình (2), ta có \(t = 2\); \(s = 0\). Thay vào phương trình (1) ta có \(1 + 2a = 1 => a =0\).
Vậy \(a = 0\) thì d và d’ cắt nhau.