Tính :
\(S = \left( {1 - {1 \over 2}} \right)\left( {1 - {1 \over 3}} \right)...\left( {1 - {1 \over {99}}} \right)\left( {1 - {1 \over {100}}} \right)\)
\(\eqalign{ & S = \left( {1 - {1 \over 2}} \right)\left( {1 - {1 \over 3}} \right)...\left( {1 - {1 \over {99}}} \right)\left( {1 - {1 \over {100}}} \right) \cr & = \left( {{2 \over 2} - {1 \over 2}} \right)\left( {{3 \over 3} - {1 \over 3}} \right)...\left( {{{99} \over {99}} - {1 \over {99}}} \right)\left( {{{100} \over {100}} - {1 \over {100}}} \right) \cr & = {1 \over 2}.{2 \over 3}.{3 \over 4}...{{98} \over {99}}.{{99} \over {100}} = {1 \over {100}} \cr} \)