Trang chủ Lớp 7 Tài liệu Dạy - Học Toán 7 (sách cũ) Bài tập 4 trang 156 Tài liệu dạy – học Toán 7...

Bài tập 4 trang 156 Tài liệu dạy – học Toán 7 tập 1, Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC....

Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau - Bài tập 4 trang 156 Tài liệu dạy – học Toán 7 tập 1. Giải bài tập Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

a) Chứng minh rằng AM là tia phân giác của góc A.

b) Kẻ ME vuông góc với AB, MF vuông góc với AC. Chứng minh rằng AE = AF.

 

a)Xét tam giác ABM và ACM có:

AB = AC (gt)

BM = CM (M là trung điểm của BC)

AM là cạnh chung.

Advertisements (Quảng cáo)

Do đó: \(\Delta ABM = \Delta ACM(c.c.c) \Rightarrow \widehat {BAM} = \widehat {CAM}\)

Vậy AM là tia phân giác của góc BAC.

b) Xét hai tam giác vuông EBM và FCM có:

BM = CM (M là trung điểm của BC)

\(\widehat {EBM} = \widehat {FCM}(do\Delta ABM = \Delta ACM)\)

Do đó: \(\Delta EBM = \Delta FCM\)  (cạnh huyền - góc nhọn) => BE = CF.

Ta có: AE + BE = AB và AF + CF = AC

Mà AB = AC (giả thiết) và BE = CF (chứng minh trên) nên AE = AF.

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - Học Toán 7 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)