Sử dụng hằng đẳng thức tổng hai lập phương: \({A^3} + {B^3} = {A^3} + 3.{A^2}.B + 3.A. Hướng dẫn giải bài 29 trang 18 sách bài tập toán 8 - Cánh diều - Bài tập cuối chương I. Biểu thức \({x^3} + 64{y^3}\) bằng: A. \(\left( {x + 4y} \right)\left( {{x^2} - 4xy + 16{y^2}} \right)\) B....
Biểu thức \({x^3} + 64{y^3}\) bằng:
A. \(\left( {x + 4y} \right)\left( {{x^2} - 4xy + 16{y^2}} \right)\)
B. \(\left( {x + 4y} \right)\left( {{x^2} - 4xy + 4{y^2}} \right)\)
C. \(\left( {x + 4y} \right)\left( {{x^2} + 4xy + 16{y^2}} \right)\)
D. \(x + 4y\left( {{x^2} - 8xy + 16{y^2}} \right)\)
Advertisements (Quảng cáo)
Sử dụng hằng đẳng thức tổng hai lập phương: \({A^3} + {B^3} = {A^3} + 3.{A^2}.B + 3.A.{B^2} + {B^3}\)
\({x^3} + 64{y^3} = \left( {x + 4y} \right)\left( {{x^2} - 4xy + 16{y^2}} \right)\)
=> Đáp án: A