Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Bài 4 trang 33 SBT Toán 8 – Cánh diều: Rút gọn...

Bài 4 trang 33 SBT Toán 8 - Cánh diều: Rút gọn mỗi phân thức sau...

Muốn rút gọn một phân thức ta có thể làm như sau: Bước 1: phân tích tử và mẫu thành nhân tử (nếu cần) Bước 2. Giải chi tiết bài 4 trang 33 sách bài tập (SBT) toán 8 - Cánh diều - Bài 1. Phân thức đại số. Rút gọn mỗi phân thức sau:...

Question - Câu hỏi/Đề bài

Rút gọn mỗi phân thức sau:

a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\)

b) \(\frac{{x - y}}{{y - x}}\)

c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\)

d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Muốn rút gọn một phân thức ta có thể làm như sau:

Bước 1: phân tích tử và mẫu thành nhân tử (nếu cần)

Bước 2: tìm nhân tử chung của tử và mẫu rồi chia cả tử và mẫu cho nhân tử chung.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)

Ta có: \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}} = \frac{{5.5{x^2}{y^3}}}{{5.7{x^3}{x^2}}} = \frac{{5y}}{{7x}}\)

b) Điều kiện xác định của phân thức là \(y - x \ne 0\)

Ta có: \(\frac{{x - y}}{{y - x}} = \frac{{ - \left( {y - x} \right)}}{{y - x}} = - 1\)

c) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)

Ta có: \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}} = \frac{{\left( { - 1} \right).{x^5}{y^2}}}{{\left( { - 1} \right).{x^2}{y^3}}} = \frac{{{x^3}}}{y}\)

d) Điều kiện xác định của phân thức là \({x^3} - 4{x^2} + 4x \ne 0\)

Ta có: \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}} = \frac{{x\left( {x - 2} \right)}}{{x\left( {{x^2} - 4x + 4} \right)}} = \frac{{x\left( {x - 2} \right)}}{{x{{\left( {x - 2} \right)}^2}}} = \frac{1}{{x - 2}}\)

Advertisements (Quảng cáo)