Trang chủ Lớp 8 SBT Toán lớp 8 (sách cũ) Câu 110 trang 93 Sách bài tập (SBT) Toán 8 tập 1:...

Câu 110 trang 93 Sách bài tập (SBT) Toán 8 tập 1: Chứng minh rằng các tia phân giác các góc của một hình bình hành cắt...

Chứng minh rằng các tia phân giác các góc của một hình bình hành cắt nhau tao thành một hình chữ nhật.. Câu 110 trang 93 Sách bài tập (SBT) Toán 8 tập 1 - Bài 9. Hình chữ nhật

Chứng minh rằng các tia phân giác các góc của một hình bình hành cắt nhau tao thành một hình chữ nhật.

Giải:                                                                         

Gọi G, H, E, K lần lượt là giao điểm của các đường phân giác của \(\widehat A\) và\(\widehat B\); \(\widehat B\) và\(\widehat C\); \(\widehat C\) và\(\widehat D\); \(\widehat D\) và\(\widehat A\).

Ta có: \(\widehat {ADF} = {1 \over 2}\widehat {ADC}\) (gt)

             \(\widehat {DAF} = {1 \over 2}\widehat {DAB}\) (gt)

            \(\widehat {ADC} + \widehat {DAB} = {180^0}\) (hai góc trong cùng phía)

Suy ra: \(\widehat {ADF} + \widehat {DAF} = {1 \over 2}\left( {\widehat {ADC} + \widehat {DAB}} \right) = {1 \over 2}{.180^0} = {90^0}\)

Trong ∆ AFD ta có:

\(\widehat {AFD} = {180^0} - \left( {\widehat {ADF} + \widehat {DAF}} \right) = {180^0} - {90^0} = {90^0}\)

Advertisements (Quảng cáo)

\(\widehat {EFG} = \widehat {AFD}\) (đối đỉnh)

\(\eqalign{  &  \Rightarrow \widehat {EFG} = {90^0}  \cr  & \widehat {GAB} = {1 \over 2}\widehat {DAB}(gt)  \cr  & \widehat {GBA} = {1 \over 2}\widehat {CBA}(gt) \cr} \)

\(\widehat {DAB} + \widehat {CBA} = {180^0}\) (hai góc trong cùng phía)

\( \Rightarrow \widehat {GBA} + \widehat {GAB} = {1 \over 2}\left( {\widehat {DAB} + \widehat {CBA}} \right) = {1 \over 2}{.180^0} = {90^0}\)

Trong ∆ AGB ta có: \(\widehat {AGB} = {180^0} - \left( {\widehat {GAB} + \widehat {GBA}} \right) = {180^0} - {90^0} = {90^0}\)

hay \(\widehat G = {90^0}\)

\(\eqalign{  & \widehat {EDC} = {1 \over 2}\widehat {ADC}(gt)  \cr  & \widehat {ECD} = {1 \over 2}\widehat {BCD}(gt) \cr} \)

\(\widehat {ADC} + \widehat {BCD} = {180^0}\) (hai góc trong cùng phía)

\( \Rightarrow \widehat {EDC} + \widehat {ECD} = {1 \over 2}\left( {\widehat {ADC} + \widehat {BCD}} \right) = {1 \over 2}{.180^0} = {90^0}\)

Trong ∆ EDC ta có: \(\widehat {DEC} = {180^0} - \left( {\widehat {EDC} + \widehat {ECD}} \right) = {180^0} - {90^0} = {90^0}\)hay \(\widehat E = {90^0}\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)