. Câu 111 trang 94 Sách bài tập (SBT) Toán 8 tập 1 - Bài 9. Hình chữ nhật
Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H theo thứ tự là trung điểm các cạnh AB, BC, CD, DA . Tứ giác EFGH là hình gì ? Vì sao ?
Giải:
Trong ∆ ABC ta có:
E là trung điểm của AB (gt)
F là trung điểm của BC (gt)
nên EF là đường trung bình của ∆ ABC
⇒ EF // AC và EF \( = {1 \over 2}\)AC (tính chất đường trung bình của tam giác) (1)
Trong ∆ DAC ta có:
H là trung điểm của AD (gt)
Advertisements (Quảng cáo)
G là trung điểm của DC (gt)
nên HG là đường trung bình của ∆ DAC.
⇒ HG // AC và HG \( = {1 \over 2}\)AC (tính chất đường trung bình của tam giác) (2)
Từ (1) và (2) suy ra: EF // HG và EF = HG
Suy ra: Tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
Ta lại có: BD ⊥ AC (gt)
EF // AC ( chứng minh trên)
Suy ra: EF ⊥ BD
Trong ∆ ABD ta có EH là đường trung bình ⇒ EH // BD
Suy ra: EF ⊥ EH hay \(\widehat {FEH} = {90^0}\)
Vậy hình bình hành EFGH là hình chữ nhật.