Thực hiện phép tính ( chú ý đến quy tắc đổi dấu)
a. \({{4\left( {x + 3} \right)} \over {3{x^2} - x}}:{{{x^2} + 3x} \over {1 - 3x}}\)
b. \({{4x + 6y} \over {x - 1}}:{{4{x^2} + 12xy + 9{y^2}} \over {1 - {x^3}}}\)
Advertisements (Quảng cáo)
a. \({{4\left( {x + 3} \right)} \over {3{x^2} - x}}:{{{x^2} + 3x} \over {1 - 3x}}\)\( = {{4\left( {x + 3} \right)} \over {3{x^2} - x}}.{{1 - 3x} \over {{x^2} + 3x}} = {{4\left( {x + 3} \right)\left( {1 - 3x} \right)} \over {x\left( {3x - 1} \right).x\left( {x + 3} \right)}} = {{ - 4\left( {3x - 1} \right)} \over {{x^2}\left( {3x - 1} \right)}} = - {4 \over {{x^2}}}\)
b. \({{4x + 6y} \over {x - 1}}:{{4{x^2} + 12xy + 9{y^2}} \over {1 - {x^3}}} = \)\({{4x + 6y} \over {x - 1}}.{{1 - {x^3}} \over {4{x^2} + 12xy + 9{y^2}}} = {{2\left( {2x + 3y} \right)\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)} \over {\left( {x - 1} \right){{\left( {2x + 3y} \right)}^2}}}\)
\( = - {{2\left( {x - 1} \right)\left( {1 + x + {x^2}} \right)} \over {\left( {x - 1} \right)\left( {2x + 3y} \right)}} = - {{2\left( {1 + x + {x^2}} \right)} \over {2x + 3y}}\)