Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh rằng MI = IK = KN.
Trong tam giác ABC ta có:
E là trung điểm của cạnh AB
D là trung điểm của cạnh AC
Nên ED là đường trung bình của ∆ ABC
\( \Rightarrow ED//BC\) và \(ED = {1 \over 2}BC\) (tính chất đường trung bình của tam giác)
Trong hình thang BCDE, ta có: BC // DE
M là trung điểm cạnh bên BE
N là trung điểm cạnh bên CD
Nên MN là đường trung bình hình thang BCDE ⇒ MN // DE
Advertisements (Quảng cáo)
\(MN = {{DE + BC} \over 2} = {{{{BC} \over 2} + BC} \over 2} = {{3BC} \over 4}\) (tính chất đường trung bình hình thang)
Trong tam giác BED ta có:
M là trung điểm của BE
MI // DE
Suy ra: MI là đường trung bình của ∆ BED
\( \Rightarrow MI = {1 \over 2}DE = {1 \over 4}BC\) (tính chất đường trung bình tam giác)
Trong tam giác CED ta có:
N là trung điểm của CD
NK // DE
Suy ra: NK là đường trung bình của ∆ BED
\( \Rightarrow NK = {1 \over 2}DE = {1 \over 4}BC\) (tính chất đường trung bình tam giác)
\(\eqalign{
& IK = MN - \left( {MI + NK} \right) \cr
& = {3 \over 4}BC - \left( {{1 \over 4}BC + {1 \over 4}BC} \right) = {1 \over 4}BC \cr
& \Rightarrow MI = IK = KN = {1 \over 4}BC \cr} \)