Trang chủ Lớp 8 Tài liệu Dạy học Toán 8 (sách cũ) Luyện tập 6 trang 172 Tài liệu dạy – học Toán 8...

Luyện tập 6 trang 172 Tài liệu dạy – học Toán 8 tập 1, Cho tam giác đều ABC có cạnh là Chứng minh rằng tổng các khoảng cách từ một điếm M bên trong tam giác đến ba cạnh luôn bằng...

Luyện tập - Chủ đề 4 : Diện tích đa giác - Luyện tập 6 trang 172 Tài liệu dạy – học Toán 8 tập 1. Giải bài tập Cho tam giác đều ABC có cạnh là a. Chứng minh rằng tổng các khoảng cách từ một điếm M bên trong tam giác đến ba cạnh luôn bằng

Cho tam giác đều ABC có cạnh là a. Chứng minh rằng tổng các khoảng cách từ một điếm M bên trong tam giác đến ba cạnh luôn bằng \({{a\sqrt 3 } \over 2}\) .

Kẻ đường cao AH của tam giác ABC.

\(\Delta ABC \Rightarrow \) AH là đường trung tuyến của tam giác ABC \( \Rightarrow H\) là trung điểm của BC

\( \Rightarrow BH = {{BC} \over 2} = {a \over 2}\)

Tam giác ABH vuông tại H \( \Rightarrow A{H^2} + B{H^2} = A{B^2}\) (định lí Pytago)

Advertisements (Quảng cáo)

\( \Rightarrow A{H^2} + {{{a^2}} \over 4} = {a^2} \Rightarrow AH = {{a\sqrt 3 } \over 2}\)

Gọi m, n, p lần lượt là khoảng cách từ M đến AB, AC, BC

Ta có: \({S_{ABC}} = {S_{ABM}} + {S_{ACM}} + {S_{BCM}} = {1 \over 2}.m.a + {1 \over 2}.n.a + {1 \over 2}.p.a = {1 \over 2}a\left( {m + n + p} \right)\)

Mặt khác: \({S_{ABC}} = {1 \over 2}AH.BC = {1 \over 2}{{a\sqrt 3 } \over 2}.a\)

\( \Rightarrow {1 \over 2}.a.\left( {m + n + p} \right) = {1 \over 2}.{{a\sqrt 3 } \over 2}.a \Rightarrow m + n + p = {{a\sqrt 3 } \over 2}\)

Vậy ta có điều phải chứng minh.

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy học Toán 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)