Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 1.10. Trang 106 SBT Toán 9 Tập 1: Cho hình thang...

Câu 1.10. Trang 106 SBT Toán 9 Tập 1: Cho hình thang ABCD vuông tại A có cạnh đáy AB bằng 6cm, cạnh...

Cho hình thang ABCD vuông tại A có cạnh đáy AB bằng 6cm, cạnh bên AD bằng 4cm và hai đường chéo vuông góc với nhau. Tính độ dài các cạnh DC, CB và đường chéo DB.. Câu 1.10. Trang 106 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông

Cho hình thang ABCD vuông tại A có cạnh đáy AB bằng 6cm, cạnh bên AD bằng 4cm và hai đường chéo vuông góc với nhau. Tính độ dài các cạnh DC, CB và đường chéo DB.

Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:

\({{HD} \over {HB}} = {{A{D^2}} \over {A{B^2}}} = {{{4^2}} \over {{6^2}}} = {4 \over 9}.\) 

Advertisements (Quảng cáo)

Dễ thấy ∆HDC đồng dạng với ∆HBA nên

\({{DC} \over {AB}} = {{HD} \over {HB}} = {4 \over 9}\) suy ra \(DC = {4 \over 9}.6 = {8 \over 3}\left( {cm} \right)\)

Kẻ đường cao CK của tam giác ABC, dễ thấy \(KB = AB-DC = 6 - {8 \over 3} = {{10} \over 3}.\)

Từ đó \(B{C^2} = K{B^2} + K{C^2} = K{B^2} + A{D^2} = {{100} \over 9} + 16 = {{244} \over 9}\) suy ra \(BC = {{\sqrt {244} } \over 3} = {{2\sqrt {61} } \over 3}\left( {cm} \right)\)

Tam giác vuông ABD có \(D{B^2} = A{B^2} + A{D^2} = {6^2} + {4^2} = 52\), từ đó \(DB = \sqrt {52}  = 2\sqrt {13} \left( {cm} \right)\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)