Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 19. Trang 105 SBT Toán 9 Tập 1: Cho tam giác...

Câu 19. Trang 105 SBT Toán 9 Tập 1: Cho tam giác ABC vuông tại A có cạnh AB = 6cm và AC = 8cm. Các...

Cho tam giác ABC vuông tại A có cạnh AB = 6cm và AC = 8cm. Các đường phân giác trong và ngoài của góc B cắt đường thẳng AC lần lượt tại M và N. Tính các đoạn thẳng AM và AN.. Câu 19. Trang 105 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông

Cho tam giác ABC vuông tại A có cạnh AB = 6cm và AC = 8cm. Các đường phân giác trong và ngoài của góc B cắt đường thẳng AC lần lượt tại M và N. Tính các đoạn thẳng AM và AN.

Vì BM là đường phân giác của góc B nên ta có:

\({{MA} \over {MC}} = {{AB} \over {BC}} \Rightarrow {{MA} \over {MA + MC}} = {{AB} \over {AB + BC}}\) (Tính chất tỉ lệ thức)

Advertisements (Quảng cáo)

Suy ra: \(MA = {{AB.(MA + MC)} \over {AB + BC}} = {{6.8} \over {6 + 10}} = {{48} \over {16}} = 3\left( {cm} \right)\)

Vì BN là đường phân giác của góc ngoài đỉnh B nên ta có: \(BM \bot BN\)

Suy ra tam giác BMN vuông tại B.

Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: \(A{B^2} = AM.AN\)

 Suy ra: \(AN = {{A{B^2}} \over {AM}} = {{{6^2}} \over 3} = {{36} \over 3} = 12\left( {cm} \right)\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)