Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 20. Trang 105 SBT Toán 9 Tập 1: Cho tam giác...

Câu 20. Trang 105 SBT Toán 9 Tập 1: Cho tam giác vuông ABC. Từ một điểm M bất kì trong tam giác kể...

Cho tam giác vuông ABC. Từ một điểm M bất kì trong tam giác kể MD, ME, MF lần lượt vuông góc với các cạnh BC, AC, AB . Câu 20. Trang 105 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông

Cho tam giác vuông ABC. Từ một điểm M bất kì trong tam  giác kể MD, ME, MF lần lượt vuông góc với các cạnh BC, AC, AB. Chứng minh rằng:

\(B{D^2} + C{E^2} + A{F^2} = D{C^2} + E{A^2} + F{B^2}.\)

Áp dụng định lí Pi-ta-go vào tam giác vuông BDM, ta có:

\(B{M^2} = B{D^2} + D{M^2} \Rightarrow B{D^2} = B{M^2} - D{M^2}\)   (1)

Áp dụng đinh lí Pi-ta-go vào tam giác vuông CEM, ta có:

\(C{M^2} = C{E^2} + E{M^2} \Rightarrow C{E^2} = C{M^2} - E{M^2}\)   (2)

Áp dụng định lí pi-ta-go vào tam giác vuông AFM, ta có:

\(A{M^2}{\rm{ = A}}{{\rm{F}}^2} + F{M^2} \Rightarrow A{F^2} = A{M^2} - F{M^2}\)    (3)

Cộng từng vế của (1), (2) và (3) ta có:

Advertisements (Quảng cáo)

\(B{D^2} + C{E^2} + A{F^2}\)

\(= B{M^2} - D{M^2} + C{M^2} - E{M^2} + A{M^2} - F{M^2}\)    (4)

Áp dụng định lí Pi-ta-go vào tam giác vuông BFM, ta có:

\(B{M^2} = B{F^2} + F{M^2}\)        (5)

Áp dụng định lí Pi-ta-go vào tam giác vuông CDM, ta có:

\(C{M^2} = C{D^2} + D{M^2}\)          (6)

Áp dụng định lí Pi-ta-go vào tam giác vuông AEM, ta có:

\(A{M^2} = A{E^2} + E{M^2}\)            (7)

Thay (5), (6), (7) vào (4) ta có:

\(\eqalign{
& B{D^2} + C{E^2}{\rm{ + A}}{{\rm{F}}^2} \cr
& = B{F^2} + F{M^2} - D{M^2} + C{D^2} + D{M^2} - E{M^2} + A{E^2} + E{M^2} - F{M^2} \cr
& = D{C^2} + E{A^2} + F{B^2} \cr} \)

Vậy \(B{D^2} + C{E^2}{\rm{ + A}}{{\rm{F}}^2} = D{C^2} + E{A^2} + F{B^2}.\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)