Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 24 trang 103 SBT Toán 9 Tập 2: Chứng minh rằng...

Câu 24 trang 103 SBT Toán 9 Tập 2: Chứng minh rằng hai tiếp tuyến này hợp với nhau một góc có số đo...

Chứng minh rằng hai tiếp tuyến này hợp với nhau một góc có số đo không đổi khi cát tuyến CAD quay xung quanh điểm A. Câu 24 trang 103 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung

Hai đường tròn (O) và (O’) cắt nhau tại A và B. Qua A vẽ cát tuyến CAD với hai đường tròn (C  (O), D  (O’)).

a) Chứng minh rằng khi cát tuyến quay xung quang điểm A thì \(\widehat {CBD}\) có số đo không đổi.

b) Từ C và D vẽ hai tiếp tuyến với đường tròn. Chứng minh rằng hai tiếp tuyến này hợp với nhau một góc có số đo không đổi khi cát tuyến CAD quay xung quanh điểm A.

Giải

a) Trong ∆ABC ta có:

 sđ  \(\overparen{AnB}\)

 sđ  \(\overparen{AmB}\)

Vì có A, B cố định nên  sđ \(\overparen{AnB}\), sđ \(\overparen{AmB}\) không thay đổi nên \(\widehat C,\widehat D\) có số đo không đổi

Advertisements (Quảng cáo)

\(\widehat {CBD} = {180^0} - \left( {\widehat C + \widehat D} \right)\) không đổi

Vậy cát tuyến CAD thay đổi số đo \(\widehat {CBD}\) không đổi.

b) Trong (O) ta có

\(\widehat {ABC} = \widehat {MCA}\) (hệ quả góc giữa tia tiếp tuyến và dây) (1)

Trong (O’) ta có: \(\widehat {ABD} = \widehat {MDA}\) (hệ quả góc giữa tia tiếp tuyến và dây) (2)

Từ (1) và (2) suy ra: \(\widehat {MCA} + \widehat {MDA} = \widehat {ABC} + \widehat {ABD} = \widehat {CBD}\)

Hay \(\widehat {MCD} + \widehat {MDC} = \widehat {CBD}\) (không đổi)

Trong ∆MCD ta có: \(\widehat {CMD} = {180^0} - \left( {\widehat {MCD} + \widehat {MDC}} \right)\)

                                             = \({180^0} - \widehat {CBD}\) (không đổi)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: