Cho đường tròn tâm O ngoại tiếp tam giác ABC. Số đo các góc A, B, C tương ứng là \({50^o},{60^o},{70^o}\). Từ O kẻ các đường thẳng OM, ON, OP lần lượt vuông góc với các dây BC, AC, AB tại M, N, P. So sánh các khoảng cách OM, ON và OP.
Sử dụng các định lí :
- Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.
- Trong một đường tròn, dây lớn hơn thì gần tâm hơn.
Advertisements (Quảng cáo)
Ta có \(\widehat A < \widehat B < \widehat C\,\,\left( {{{50}^0} < {{60}^0} < {{70}^0}} \right)\) nên \(BC < AC < AB\) (trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn).
Do đó \(OM > ON > OP\) (trong một đường tròn, dây lớn hơn thì gần tâm hơn).
Baitapsgk.com