Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 2 trang 128 Tài liệu dạy – học Toán 9 tập...

Bài 2 trang 128 Tài liệu dạy – học Toán 9 tập 1: Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng...

Bài tập - Chủ đề 6 : Đường kính và dây của đường tròn - Bài 2 trang 128 Tài liệu dạy – học Toán 9 tập 1. Giải bài tập Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng :

Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng :

a) Bốn điểm B, C, H, K cùng thuộc một đường tròn.

b) HK < BC.

+) Sử dụng định lí đường trung tuyến trong tam giác vuông chứng minh 4 điểm \(B,\,\,C,\,\,H,\,\,K\) cùng thuộc một đường tròn.

+) Trong một đường tròn, mọi dây cung không đi qua tâm đều nhỏ hơn đường kính của đường tròn đó.

Advertisements (Quảng cáo)

 

Gọi \(I\) là trung điểm của \(BC\).

Xét tam giác vuông BHC có \(IH = \dfrac{1}{2}BC = IB = IC\,\,\left( 1 \right)\) (trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy).

Xét tam giác vuông BKC có \(IK = \dfrac{1}{2}BC = IB = IC\,\,\left( 1 \right)\) (trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy).

Từ (1) và (2) \( \Rightarrow IH = IK = IB = IC \Rightarrow \) 4 điểm \(B,\,\,C,\,\,H,\,\,K\) cùng thuộc đường tròn tâm \(I\) đường kính \(BC\).

Xét đường tròn \(\left( {I;\dfrac{{BC}}{2}} \right)\) ta có \(BC\) là đường kính, \(HK\) là dây cung không đi qua tâm.

Vậy \(HK < BC\).

 Baitapsgk.com

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)