Cho phương trình x2−2mx−m2−1=0 (1) với x là ẩn số.
a) Chứng minh phương trình (1) luôn luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Hãy tìm một hệ thức liên hệ giữa hai nghiệm x1, x2 mà không phụ thuộc vào m.
c) Tìm m để (1) có hai nghiệm thỏa mãn hệ thức x1x2+x2x1=−52
a) Chứng minh \Delta ‘ > 0\,\,\forall m.
b) Áp dụng định lí Vi-ét. Rút m từ 1 trong 2 phương trình thay vào phương trình còn lại.
c) Áp dụng định lí Vi-ét.
Advertisements (Quảng cáo)
a) Ta có: \Delta ‘ = {m^2} - 1\left( { - {m^2} - 1} \right) \,= {m^2} + {m^2} + 1 \,= 2{m^2} + 1 > 0\,\,\forall m \Rightarrow Phương trình (1) luôn luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Áp dụng định lí Vi-ét ta có:
\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = - {m^2} + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m = \dfrac{{{x_1} + {x_2}}}{2}\\{x_1}{x_2} = - {m^2} + 1\end{array} \right. \\ \Rightarrow {x_1}{x_2} = - \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{4} + 1.
\Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} + 4{x_1}{x_2} - 4 = 0.
c) Ta có:
\begin{array}{l}\dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} = - \dfrac{5}{2} \Leftrightarrow \dfrac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} = - \dfrac{5}{2}\\ \Leftrightarrow \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}{{{x_1}{x_2}}} = - \dfrac{5}{2}\\ \Leftrightarrow \dfrac{{4{m^2} + 2{m^2} - 2}}{{ - {m^2} + 1}} = - \dfrac{5}{2}\\ \Leftrightarrow 12{m^2} - 4 = 5{m^2} - 5 \Leftrightarrow 7{m^2} = - 1\end{array}
(vô nghiệm).
Vậy không có giá trị của m thỏa mãn yêu cầu bài toán.
Baitapsgk.com