Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 5 trang 75 Tài liệu dạy – học Toán 9 tập...

Bài 5 trang 75 Tài liệu dạy – học Toán 9 tập 1: Cho tam giác ABC vuông tại A có diện tích...

Luyện tập - Chủ đề 1 : Một số hệ thức về cạnh và đường cao trong tam giác vuông - Bài 5 trang 75 Tài liệu dạy – học Toán 9 tập 1. Giải bài tập Cho tam giác ABC vuông tại A có diện tích

Cho tam giác ABC vuông tại A có diện tích \(37,5c{m^2},AB < AC\), đường cao AH có độ dài 6 cm. Tính các độ dài AB, AC.

Áp các cách tính diện tích và định lý Pythagore trong tam giác vuông để tìm ra hai mối quan hệ giữa AB, AC, từ đó rút thế để giải. 

Có \({S_{\Delta ABC}} = \dfrac{{AB.AC}}{2} \)

Advertisements (Quảng cáo)

\(\Rightarrow AB.AC = 2.{S_{\Delta ABC}} = 2.37,5 = 75\\ \Rightarrow AB = \dfrac{{75}}{{AC}}\)

Mặt khác: \({S_{\Delta ABC}} = \dfrac{{AH.BC}}{2}\)

\(\Rightarrow BC = \dfrac{{2.{S_{\Delta ABC}}}}{{AH}} = \dfrac{{2.37,5}}{6} = \dfrac{{25}}{2}\)  (cm)

Áp dụng định lý Pythagore trong tam giác ABC vuông tại A:

\(A{B^2} + A{C^2} = B{C^2} \\\Rightarrow \dfrac{{{{75}^2}}}{{A{C^2}}} + A{C^2} = {\left( {\dfrac{{25}}{2}} \right)^2}\\ \Leftrightarrow {75^2} + A{C^4} = {\left( {\dfrac{{25}}{2}} \right)^2}.A{C^2}\)

\( \Leftrightarrow \left[ \begin{array}{l}A{C^2} = 100\\A{C^2} = \dfrac{{225}}{4}\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}AC = 10 \Rightarrow AB = \dfrac{{15}}{2}\\AC = \dfrac{{15}}{2} \Rightarrow AB = 10\end{array} \right.\,\,\)

Mà \(AB < AC \Rightarrow AC = 10;\,\,AB = \dfrac{{15}}{2}\)

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)