Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 6 trang 111 Tài liệu dạy – học Toán 9 tập...

Bài 6 trang 111 Tài liệu dạy – học Toán 9 tập 2: Cho cung AB trên đường tròn (O; R)...

Bài tập - Chủ đề 4 : Chu vi và diện tích hình tròn - Bài 6 trang 111 Tài liệu dạy – học Toán 9 tập 2. Giải bài tập Cho cung AB trên đường tròn (O; R)

Cho cung AB trên đường tròn (O; R)

a) Tính \(\widehat {AOB}\) khi biết có độ dài \(l = \dfrac{{\pi R}}{4}\) .

b) Chọn điểm C trên đường tròn sao cho AC cắt đoạn OB và OAC là tam giác đều. Tính độ dài các cung lớn AC và  BC.

Sử dụng các công thức \(l = \dfrac{{\pi Rn}}{{180}}\).

Advertisements (Quảng cáo)

 

a) Ta có \(l = \dfrac{{\pi R}}{4} \Leftrightarrow \dfrac{{\pi Rn}}{{180}} = \dfrac{{\pi R}}{4} \Leftrightarrow \dfrac{n}{{180}} = \dfrac{1}{4} \Leftrightarrow n = {45^0}\).

Vì \(\widehat {AOB}\) là góc ở tâm \( \Rightarrow \widehat {AOB} = sdcung\,AB = {45^0}\) (số đo góc ở tâm bằng số đo cung bị chắn).

b) Ta có \(sdcung\,AC = \widehat {AOC} = {60^0}\)

Khi đó độ dài cung lớn AC là độ dài của cung \({360^0} - {60^0} = {300^0} \Rightarrow \)độ dài cung lớn AC bằng \(\dfrac{{\pi R.300}}{{180}} = \dfrac{{5\pi R}}{3}\).

Ta có: \(cung\,AB + cung\,BC = cung\,AC \Rightarrow {45^0} + cung\,BC = {60^0} \Leftrightarrow cung\,BC = {15^0}\).

Khi đó độ dài cung lớn BC là độ dài của cung \({360^0} - {15^0} = {345^0} \Rightarrow \)độ dài cung lớn BC bằng \(\dfrac{{\pi R.345}}{{180}} = \dfrac{{23\pi R}}{{12}}\).

 

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)