Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 6 trang 23 Tài liệu dạy – học Toán 9 tập...

Bài 6 trang 23 Tài liệu dạy – học Toán 9 tập 2: Giải hệ phương trình...

Bài tập – Chủ đề 2 : Giải hệ phương trình bậc nhất hai ẩn - Bài 6 trang 23 Tài liệu dạy – học Toán 9 tập 2. Giải bài tập Giải hệ phương trình

Giải hệ phương trình \(\left\{ \begin{array}{l}\dfrac{6}{x} - \dfrac{4}{y} =  - 4\\\dfrac{3}{x} + \dfrac{8}{y} = 3\end{array} \right.\)

+) Đặt \(\left\{ \begin{array}{l}u = \dfrac{1}{x}\\v = \dfrac{1}{y}\end{array} \right.\), đưa hệ phương trình về hệ phương trình hai ẩn u, v.

+) Sử dụng phương pháp thế hoặc cộng đại số giải hệ phương trình tìm u, v.

+) Thay u, v và tìm x, y.

Advertisements (Quảng cáo)

Điều kiện : \(x \ne 0;\,\,y \ne 0\).

Đặt \(\left\{ \begin{array}{l}u = \dfrac{1}{x}\\v = \dfrac{1}{y}\end{array} \right.\), khi đó hệ phương trình trở thành

\(\begin{array}{l}\left\{ \begin{array}{l}6u - 4v =  - 4\\3u + 8v = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3u - 2v =  - 2\\3u + 8v = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}10v = 5\\3u + 8v = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}v = \dfrac{1}{2}\\3u + 4 = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}v = \dfrac{1}{2}\\3u =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}v = \dfrac{1}{2}\\u = \dfrac{{ - 1}}{3}\end{array} \right.\end{array}\)

\(\begin{array}{l}v = \dfrac{1}{2} \Rightarrow \dfrac{1}{y} = \dfrac{1}{2} \Leftrightarrow y = 2\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\u = \dfrac{{ - 1}}{3} \Rightarrow \dfrac{1}{x} = \dfrac{{ - 1}}{3} \Leftrightarrow x =  - 3\,\,\,\left( {tm} \right)\end{array}\)

Vậy \(\left( {x;y} \right) = \left( { - 3;2} \right)\) là nghiệm của hệ phương trình.

 

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: